Have a personal or library account? Click to login
Evaluating an Analysis-by-Synthesis Model for Jazz Improvisation Cover

Evaluating an Analysis-by-Synthesis Model for Jazz Improvisation

Open Access
|Feb 2022

References

  1. 1Aebersold, J. (1967). A New Approach to Jazz Improvisation.
  2. 2Ake, D. A. (2002). Jazz Cultures. University of California Press, Berkeley. DOI: 10.1525/9780520926967
  3. 3Arcos, J. L., Lopéz de Mántaras, R., and Serra, X. (1998). SaxEx: A case-based reasoning system for generating expressive musical performances. Journal of New Music Research, 27:194210. DOI: 10.1080/09298219808570746
  4. 4Biles, J. A. (1994). GenJam: Evolution of a jazz improviser. In Proceedings of the International Computer Music Conference (ICMC), pages 131137.
  5. 5Chamberlain, R., Mullin, C., Scheerlinck, B., and Wagemans, J. (2018). Putting the art in artificial: Aesthetic responses to computer-generated art. Psychology of Aesthetics, Creativity, and the Arts, 12(2):177192. DOI: 10.1037/aca0000136
  6. 6Coker, J. (1987). Improvising Jazz. Simon & Schuster, New York, 1st fireside edition.
  7. 7Cooke, M., and Horn, D. (2002). The Cambridge Companion to Jazz. Cambridge University Press, Cambridge, UK. OCLC: 758544526. DOI: 10.1017/CCOL9780521663205
  8. 8Friberg, A., Gulz, T., and Wettebrandt, C. (2021). Computer tools for modeling swing timing interactions in a jazz ensemble. In 16th International Conference on Music Perception and Cognition and 11th Triennial Conference of the European Society for the Cognitive Sciences of Music (ICMPC16-ESCOM11), Sheffield, UK.
  9. 9Frieler, K. (2018). A feature history of jazz solo improvisation. In Knauer, W., editor, Jazz @ 100: An Alternative to a Story of Heroes, volume 15 of Darmstadt Studies in Jazz Research. Wolke Verlag, Hofheim am Taunus.
  10. 10Frieler, K. (2019). Constructing jazz lines: Taxonomy, vocabulary, grammar. In Pfleiderer, M. and Zaddach, W.-G., editors, Jazzforschung heute: Themen, Methoden, Perspektiven, Berlin. Edition Emwas.
  11. 11Frieler, K. (2020). Miles vs. Trane: Computational and statistical comparison of the improvisatory styles of Miles Davis and John Coltrane. Jazz Perspectives, 12(1):123145. DOI: 10.1080/17494060.2020.1734053
  12. 12Frieler, K., Pfleiderer, M., Abeßer, J., and Zaddach, W.-G. (2016). Midlevel analysis of monophonic jazz solos: A new approach to the study of improvisation. Musicae Scientiae, 20(2):143162. DOI: 10.1177/1029864916636440
  13. 13Grachten, M. (2001). JIG: Jazz Improvisation Generator. In Proceedings of the MOSART Workshop on Current Research Directions in Computer Music, Barcelona, Spain.
  14. 14Haviv Hakimi, S., Bhonker, N., and El-Yaniv, R. (2020). BebopNet: Deep neural models for personalized jazz improvisations. In Proceedings of the 21st International Society for Music Information Retrieval Conference, Montréal, Canada.
  15. 15Hiller, L. A., and Isaacson, L. M. (1959). Experimental Music: Composition With an Electronic Computer. McGraw-Hill, New York.
  16. 16Hung, H.-T., Wang, C.-Y., Yang, Y.-H., and Wang, H.-M. (2019). Improving automatic jazz melody generation by transfer learning techniques. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pages 18, Lanzhou, China. DOI: 10.1109/APSIPAASC47483.2019.9023224
  17. 17Johnson-Laird, P. N. (1991). Jazz improvisation: A theory at the computational level. In Howell, P., West, R., and Cross, I., editors, Representing Musical Structure, London. Academic Press.
  18. 18Johnson-Laird, P. N. (2002). How jazz musicians improvise. Music Perception, 10:415442. DOI: 10.1525/mp.2002.19.3.415
  19. 19Kaufman, J. C., and Beghetto, R. A. (2009). Beyond big and little: The Four C Model of Creativity. Review of General Psychology, 13(1):112. DOI: 10.1037/a0013688
  20. 20Keller, R., Schofield, A., Toman-Yih, A., Merritt, Z., and Elliott, J. (2013). Automating the explanation of jazz chord progressions using idiomatic analysis. Computer Music Journal, 37(4):5469. DOI: 10.1162/COMJ_a_00201
  21. 21Keller, R. M., and Morrison, D. (2007). A grammatical approach to automatic improvisation. In Proceedings of the 4th Sound and Music Computing Conference, pages 330337, Lefkada, Greece.
  22. 22Lothwesen, K., and Frieler, K. (2012). Gestaltungsmuster und Ideenuss in Jazzpiano-Improvisationen: Eine Pilotstudie zum Einfluss von Tempo, Tonalität und Expertise. In Lehmann, A., Jeßulat, A., and Wünsch, C., editors, Kreativität: Struktur und Emotion. Königshausen & Neumann, Würzburg.
  23. 23Madaghiele, V., Lisena, P., and Troncy, R. (2021). MINGUS: Melodic improvisation neural generator using Seq2Seq. In 22nd International Society for Music Information Retrieval Conference.
  24. 24Moffat, D., and Kelly, M. (2006). An investigation into people’s bias against computational creativity in music composition. In Third Joint Workshop on Computational Creativity, ECAI 2006, Trento, Italy. Universita di Trento.
  25. 25Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. University of Chicago Press, Chicago.
  26. 26Norgaard, M. (2011). Descriptions of improvisational thinking by artist-level jazz musicians. Journal of Research in Music Education, 59(2):109127. DOI: 10.1177/0022429411405669
  27. 27Norgaard, M. (2014). How jazz musicians improvise: The central role of auditory and motor patterns. Music Perception: An Interdisciplinary Journal, 31(3):271287. DOI: 10.1525/mp.2014.31.3.271
  28. 28Owens, T. (1974). Charlie Parker: Techniques of Improvisation. PhD thesis, University of California, Los Angeles.
  29. 29Pachet, F. (2003). The Continuator: Musical interaction with style. Journal of New Music Research, 32(3):333341. DOI: 10.1076/jnmr.32.3.333.16861
  30. 30Pachet, F. (2012). Musical virtuosity and creativity. In McCormack, J. and d’Inverno, M., editors, Computers and Creativity, pages 115146. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-31727-9_5
  31. 31Papadopoulos, G., and Wiggins, G. (1998). A genetic algorithm for the generation of jazz melodies. In Human and Artificial Information Processing: Finnish Conference on Artificial Intelligence (STeP’98), Jyväskylä, Finland.
  32. 32Pfleiderer, M., Frieler, K., Abeßer, J., Zaddach, W.-G., and Burkhart, B., editors (2017). Inside the Jazzomat: New Perspectives for Jazz Research. Schott Music GmbH & Co. KG, Mainz, 1. Auflage OCLC: 1015349144.
  33. 33Pressing, J. (1984). Cognitive Processes in Improvisation. Cognitive Processes in the Perception of Art. Elsevier, North-Holland. DOI: 10.1016/S0166-4115(08)62358-4
  34. 34Pressing, J. (1988). Improvisation: Method and models. In Sloboda, J. A., editor, Generative Processes in Music: The Psychology of Performance, Improvisation, and Composition, pages 129178, Oxford. Clarendon. DOI: 10.1093/acprof:oso/9780198508465.003.0007
  35. 35Quick, D., and Thomas, K. (2019). A functional model of jazz improvisation. In Proceedings of the 7th ACM SIGPLAN International Workshop on Functional Art, Music, Modeling, and Design (FARM 2019), pages 1121, Berlin, Germany. ACM Press. DOI: 10.1145/3331543.3342577
  36. 36Ramalho, G. L., Rolland, P.-Y., and Ganascia, J.-G. (1999). An artificially intelligent jazz performer. Journal of New Music Research, 28(2):105129. DOI: 10.1076/jnmr.28.2.105.3120
  37. 37Russell, G. (1953). George Russell’s Lydian chromatic concept of tonal organization. Concept Pub. Co, Brookline, Mass. OCLC: ocm50075662.
  38. 38Schütz, M. (2015). Improvisation im Jazz: eine empirische Untersuchung bei Jazzpianisten auf der Basis der Ideenussanalyse. Number 34 in Schriftenreihe Studien zur Musikwissenschaft. Kovač, Hamburg. OCLC: 915812622.
  39. 39Toiviainen, P. (1995). Modelling the target-note technique of bebop-style jazz improvisation: An artificial neural network approach. Music Perception, 12:398413. DOI: 10.2307/40285674
  40. 40Trieu, N., and Keller, R. (2018). JazzGAN: Improvising with generative adversarial networks. In Proceedings of the 6th International Workshop on Musical Metacreation (MUME 2018), Salamanca, Spain.
  41. 41Von Hippel, P., and Huron, D. (2000). Why do skips precede reversals? The effect of tessitura on melodic structure. Music Perception: An Interdisciplinary Journal, 18(1):5985. DOI: 10.2307/40285901
  42. 42Wiggins, G., and Pearce, M. (2001). Towards a framework for the evaluation of machine compositions. In Proceedings of the AISB’01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, pages 2232, York.
  43. 43Wu, S.-L., and Yang, Y.-H. (2020). The Jazz Transformer on the front line: Exploring the shortcomings of AI-composed music through quantitative measures. In 21st International Society for Music Information Retrieval Conference, pages 142149, Montréal, Canada.
  44. 44Yang, L.-C., and Lerch, A. (2020). On the evaluation of generative models in music. Neural Computing and Applications, 32(9):47734784. DOI: 10.1007/s00521-018-3849-7
DOI: https://doi.org/10.5334/tismir.87 | Journal eISSN: 2514-3298
Language: English
Submitted on: Feb 26, 2021
Accepted on: Nov 24, 2021
Published on: Feb 3, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Klaus Frieler, Wolf-Georg Zaddach, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.