Have a personal or library account? Click to login
On End-to-End White-Box Adversarial Attacks in Music Information Retrieval Cover

On End-to-End White-Box Adversarial Attacks in Music Information Retrieval

Open Access
|Jul 2021

References

  1. 1Akhtar, N., and Mian, A. S. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6: 1441014430. DOI: 10.1109/ACCESS.2018.2807385
  2. 2Bhalke, D. G., Rao, C. B. R., and Bormane, D. S. (2016). Automatic musical instrument classification using fractional Fourier transform based MFCC features and counter propagation neural network. Journal of Intelligent Information Systems, 46(3): 425446. DOI: 10.1007/s10844-015-0360-9
  3. 3Carlini, N., and Wagner, D. A. (2018). Audio adversarial examples: Targeted attacks on speech-to-text. In Proc. of the IEEE Security and Privacy Workshops, pages 17. IEEE. DOI: 10.1109/SPW.2018.00009
  4. 4Deldjoo, Y., Noia, T. D., and Merra, F. A. (2021). A survey on adversarial recommender systems: From attack/defense strategies to generative adversarial networks. ACM Computing Surveys, 54(2): 138. DOI: 10.1145/3439729
  5. 5Du, T., Ji, S., Li, J., Gu, Q., Wang, T., and Beyah, R. (2020). SirenAttack: Generating adversarial audio for end-to-end acoustic systems. In Proc. of the 15th ACM Asia Conference on Computer and Communications Security, pages 357369. ACM. DOI: 10.1145/3320269.3384733
  6. 6Engel, J. H., Hantrakul, L., Gu, C., and Roberts, A. (2020). DDSP: Differentiable digital signal processing. In Proc. of the 8th International Conference on Learning Representations.
  7. 7Feldbauer, R., and Flexer, A. (2019). A comprehensive empirical comparison of hubness reduction in high-dimensional spaces. Knowledge and Information Systems, 59(1): 137166. DOI: 10.1007/s10115-018-1205-y
  8. 8Feldbauer, R., Rattei, T., and Flexer, A. (2020). scikithubness: Hubness reduction and approximate neighbor search. Journal of Open Source Software, 5(45): 1957. DOI: 10.21105/joss.01957
  9. 9Flexer, A., Dörfler, M., Schlüter, J., and Grill, T. (2018). Hubness as a case of technical algorithmic bias in music recommendation. In Proc. of the IEEE International Conference on Data Mining Workshops, pages 10621069. IEEE. DOI: 10.1109/ICDMW.2018.00154
  10. 10Flexer, A., and Stevens, J. (2018). Mutual proximity graphs for improved reachability in music recommendation. Journal of New Music Research, 47(1): 1728. DOI: 10.1080/09298215.2017.1354891
  11. 11Fonseca, E., Plakal, M., Font, F., Ellis, D. P., and Serra, X. (2019). Audio tagging with noisy labels and minimal supervision. In Proc. of the Detection and Classification of Acoustic Scenes and Events Workshop, pages 6973. New York University. DOI: 10.33682/w13e-5v06
  12. 12Gasser, M., and Flexer, A. (2009). FM4 Soundpark: Audio-based music recommendation in everyday use. In Proc. of the 6th Sound and Music Computing Conference, pages 2325.
  13. 13Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial examples. In Proc. of the 3rd International Conference on Learning Representations.
  14. 14Holzapfel, A., Sturm, B. L., and Coeckelbergh, M. (2018). Ethical dimensions of music information retrieval technology. Transactions of the International Society for Music Information Retrieval, 1(1): 4455. DOI: 10.5334/tismir.13
  15. 15Ioffe, S., and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. of the 32nd International Conference on Machine Learning, pages 448456.
  16. 16Kereliuk, C., Sturm, B. L., and Larsen, J. (2015). Deep learning, audio adversaries, and music content analysis. In Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages 15. IEEE. DOI: 10.1109/WASPAA.2015.7336950
  17. 17Kingma, D. P., and Ba, J. (2015). Adam: A method for stochastic optimization. In Proc. of the 3rd International Conference on Learning Representations.
  18. 18Knees, P., Schnitzer, D., and Flexer, A. (2014). Improving neighborhood-based collaborative filtering by reducing hubness. In Proc. of the 4th International Conference on Multimedia Retrieval, page 161. ACM. DOI: 10.1145/2578726.2578747
  19. 19Lostanlen, V., Andén, J., and Lagrange, M. (2018). Extended playing techniques: The next milestone in musical instrument recognition. In Proc. of the 5th International Conference on Digital Libraries for Musicology, pages 110. ACM. DOI: 10.1145/3273024.3273036
  20. 20Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards deep learning models resistant to adversarial attacks. In Proc. of the 6th International Conference on Learning Representations.
  21. 21Mandel, M. I., and Ellis, D. P. (2005). Song-level features and support vector machines for music classification. In Proc. of the 6th International Conference on Music Information Retrieval, pages 594599.
  22. 22Nair, V., and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In Proc. of the 27th International Conference on Machine Learning, pages 807814.
  23. 23Pachet, F., and Aucouturier, J.-J. (2004). Improving timbre similarity: How high is the sky? Journal of Negative Results in Speech and Audio Sciences, 1(1): 113.
  24. 24Paischer, F., Prinz, K., and Widmer, G. (2019). Audio tagging with convolutional neural networks trained with noisy data. In Proc. of the Detection and Classification of Acoustic Scenes and Events Workshop.
  25. 25Qin, Y., Carlini, N., Cottrell, G. W., Goodfellow, I. J., and Raffel, C. (2019). Imperceptible, robust, and targeted adversarial examples for automatic speech recognition. In Proc. of the 36th International Conference on Machine Learning, pages 52315240.
  26. 26Radovanović, M., Nanopoulos, A., and Ivanović, M. (2010). Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research, 11(86): 24872531.
  27. 27Rodríguez-Algarra, F., Sturm, B. L., and Dixon, S. (2019). Characterising confounding effects in music classification experiments through interventions. Transactions of the International Society for Music Information Retrieval, 2(1): 5266. DOI: 10.5334/tismir.24
  28. 28Schedl, M. (2019). Deep learning in music recommendation systems. Frontiers in Applied Mathematics and Statistics, 5: 44. DOI: 10.3389/fams.2019.00044
  29. 29Schnitzer, D., Flexer, A., Schedl, M., and Widmer, G. (2012). Local and global scaling reduce hubs in space. Journal of Machine Learning Research, 13(1): 28712902.
  30. 30Schönherr, L., Kohls, K., Zeiler, S., Holz, T., and Kolossa, D. (2019). Adversarial attacks against automatic speech recognition systems via psychoacoustic hiding. In Proc. of the 26th Annual Network and Distributed System Security Symposium. The Internet Society. DOI: 10.14722/ndss.2019.23288
  31. 31Sturm, B. L. (2013). Classification accuracy is not enough: On the evaluation of music genre recognition systems. Journal of Intelligent Information Systems, 41(3): 371406. DOI: 10.1007/s10844-013-0250-y
  32. 32Sturm, B. L. (2014). A simple method to determine if a music information retrieval system is a “horse”. IEEE Transactions on Multimedia, 16(6): 16361644. DOI: 10.1109/TMM.2014.2330697
  33. 33Sturm, B. L. (2016). The “horse” inside: Seeking causes behind the behaviors of music content analysis systems. Computers in Entertainment, 14(2): 132. DOI: 10.1145/2967507
  34. 34Subramanian, V., Pankajakshan, A., Benetos, E., Xu, N., McDonald, S., and Sandler, M. (2020). A study on the transferability of adversarial attacks in sound event classification. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 301305. IEEE. DOI: 10.1109/ICASSP40776.2020.9054445
  35. 35Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R. (2014). Intriguing properties of neural networks. In Proc. of the 2nd International Conference on Learning Representations.
  36. 36Trochim, W. M., and Donnelly, J. P. (2001). The Research Methods Knowledge Base. Atomic Dog Publishing, Cincinnati, 2nd edition.
  37. 37Urbano, J., Schedl, M., and Serra, X. (2013). Evaluation in music information retrieval. Journal of Intelligent Information Systems, 41(3): 345369. DOI: 10.1007/s10844-013-0249-4
  38. 38Zhang, W. E., Sheng, Q. Z., Alhazmi, A. A., and Li, C. (2020). Adversarial attacks on deep-learning models in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology, 11(3): 24: 141. DOI: 10.1145/3374217
DOI: https://doi.org/10.5334/tismir.85 | Journal eISSN: 2514-3298
Language: English
Submitted on: Jan 11, 2021
Accepted on: May 28, 2021
Published on: Jul 7, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Katharina Prinz, Arthur Flexer, Gerhard Widmer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.