Have a personal or library account? Click to login
Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form Cover

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form

By: Dror Chawin and  Uri B. Rom  
Open Access
|Dec 2021

References

  1. 1Albrecht, J., and Shanahan, D. (2013). The use of large corpora to train a new type of key-finding algorithm: An improved treatment of the minor mode. Music Perception: An Interdisciplinary Journal, 31(1): 5967. DOI: 10.1525/mp.2013.31.1.59
  2. 2Aldwell, E., Schachter, C., and Cadwallader, A. (2018). Harmony and voice leading. Cengage Learning.
  3. 3Allegraud, P., Bigo, L., Feisthauer, L., Giraud, M., Groult, R., Leguy, E., and Levé, F. (2019). Learning sonata form structure on Mozart’s string quartets. Transactions of the International Society for Music Information Retrieval (TISMIR), 2(1): 8296. DOI: 10.5334/tismir.27
  4. 4Bigo, L., Giraud, M., Groult, R., Guiomard-Kagan, N., and Levé, F. (2017). Sketching sonata form structure in selected classical string quartets. In International Society for Music Information Retrieval Conference.
  5. 5Briot, J.-P., Hadjeres, G., and Pachet, F.-D. (2020). Deep Learning Techniques for Music Generation. Springer. DOI: 10.1007/978-3-319-70163-9
  6. 6Caplin, W. E. (1998). Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven. Oxford University Press, USA.
  7. 7Caplin, W. E., Hepokoski, J., and Webster, J. (2009). Musical Form, Forms & Formenlehre: Three Methodological Reflections. Leuven University Press.
  8. 8Chen, T.-P., and Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In International Society for Music Information Retrieval Conference, pages 9097.
  9. 9Chen, T.-P., and Su, L. (2021). Attend to chords: Improving harmonic analysis of symbolic music using transformer-based models. Transactions of the International Society for Music Information Retrieval, 4(1): 113. DOI: 10.5334/tismir.65
  10. 10Feisthauer, L., Bigo, L., and Giraud, M. (2019). Modeling and learning structural breaks in sonata forms. In International Society for Music Information Retrieval Conference.
  11. 11Feisthauer, L., Bigo, L., Giraud, M., and Levé, F. (2020). Estimating keys and modulations in musical pieces. In 17th Sound and Music Computing Conference.
  12. 12Fucks, W. (1962). Mathematical analysis of formal structure of music. IRE Transactions on Information Theory, 8(5): 225228. DOI: 10.1109/TIT.1962.1057746
  13. 13Gedik, A. C., and Bozkurt, B. (2010). Pitch-frequency histogram-based music information retrieval for Turkish music. Signal Processing, 90(4): 10491063. DOI: 10.1016/j.sigpro.2009.06.017
  14. 14Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
  15. 15Hentschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The Annotated Mozart Sonatas: Score, harmony, and cadence. Transactions of the International Society for Music Information Retrieval, 4(1): 6780. DOI: 10.5334/tismir.63
  16. 16Hepokoski, J., and Darcy, W. (2006). Elements of sonata theory: Norms, types, and deformations in the lateeighteenth-century sonata. Oxford University Press. DOI: 10.1093/acprof:oso/9780195146400.001.0001
  17. 17Jiang, D.-N., Lu, L., Zhang, H.-J., Tao, J.-H., and Cai, L.-H. (2002). Music type classification by spectral contrast feature. In Proceedings of the IEEE International Conference on Multimedia and Expo, volume 1, pages 113116. IEEE. DOI: 10.1109/ICME.2002.1035731
  18. 18Jiang, N., and Müller, M. (2013). Automated methods for analyzing music recordings in sonata form. In International Society for Music Information Retrieval Conference, pages 595600.
  19. 19Koduri, G. K., Gulati, S., Rao, P., and Serra, X. (2012). Rāga recognition based on pitch distribution methods. Journal of New Music Research, 41(4): 337350. DOI: 10.1080/09298215.2012.735246
  20. 20Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. Oxford University Press.
  21. 21Krumhansl, C. L., and Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89(4): 334368. DOI: 10.1037/0033-295X.89.4.334
  22. 22Lidy, T., and Rauber, A. (2005). Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In International Conference on Music Information Retrieval (ISMIR), pages 3441.
  23. 23Lidy, T., Rauber, A., Pertusa, A., and Quereda, J. M. I. (2007). Improving genre classification by combination of audio and symbolic descriptors using a transcription system. In International Conference on Music Information Retrieval (ISMIR), pages 6166.
  24. 24Lieck, R., and Rohrmeier, M. (2020). Modelling hierarchical key structure with pitch scapes. In Proceedings of the 21st International Society for Music Information Retrieval Conference.
  25. 25Micchi, G., Gotham, M., and Giraud, M. (2020). Not all roads lead to Rome: Pitch representation and model architecture for automatic harmonic analysis. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1): 4254. DOI: 10.5334/tismir.45
  26. 26Nápoles López, N., Arthur, C., and Fujinaga, I. (2019). Key-finding based on a hidden Markov model and key profiles. In 6th International Conference on Digital Libraries for Musicology, pages 3337. DOI: 10.1145/3358664.3358675
  27. 27Nápoles López, N., Feisthauer, L., Levé, F., and Fujinaga, I. (2020). On local keys, modulations, and tonicizations: A dataset and methodology for evaluating changes of key. In 7th International Conference on Digital Libraries for Musicology, pages 1826. DOI: 10.1145/3424911.3425515
  28. 28Panagakis, I., Benetos, E., and Kotropoulos, C. (2008). Music genre classification: A multilinear approach. In International Conference on Music Information Retrieval (ISMIR), pages 583588.
  29. 29Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard Duchesnay. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 28252830.
  30. 30Quinn, I. (2010). Are pitch-class profiles really “key for key”? Zeitschrift der Gesellschaft für Musiktheorie [Journal of the German-speaking Society of Music Theory], 7(2): 151163. DOI: 10.31751/513
  31. 31Quinn, I., and White, C. W. (2017). Corpus-derived key profiles are not transpositionally equivalent. Music Perception: An Interdisciplinary Journal, 34(5): 531540. DOI: 10.1525/mp.2017.34.5.531
  32. 32Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of Biometrics, 741: 659663. DOI: 10.1007/978-0-387-73003-5_196
  33. 33Rosen, C. (1988). Sonata Forms. Norton.
  34. 34Sapp, C. S. (2001). Harmonic visualizations of tonal music. In International Computer Music Conference, pages 419422.
  35. 35Sapp, C. S. (2005). Visual hierarchical key analysis. Computers in Entertainment (CIE), 3(4): 119. DOI: 10.1145/1095534.1095544
  36. 36Sapp, C. S. (2011). Computational Methods for the Analysis of Musical Structure. PhD thesis, Stanford University, Department of Music.
  37. 37Schoenberg, A. (1967). Fundamentals of Musical Composition. Faber & Faber London.
  38. 38Schreiber, H., Weiss, C., and Müller, M. (2020). Local key estimation in classical music recordings: A cross-version study on Schubert’s Winterreise. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 501505. IEEE. DOI: 10.1109/ICASSP40776.2020.9054642
  39. 39Sears, D., Caplin, W. E., and McAdams, S. (2012). Perceiving the classical cadence. Music Perception: An Interdisciplinary Journal, 31(5): 397417. DOI: 10.1525/mp.2014.31.5.397
  40. 40Shan, M.-K., and Kuo, F.-F. (2003). Music style mining and classification by melody. IEICE Transactions on Information and Systems, 86(3): 655659.
  41. 41Shibata, G., Nishikimi, R., and Yoshii, K. (2020). Music structure analysis based on an LSTM-HSMM hybrid model. In International Society for Music Information Retrieval Conference, pages 1522.
  42. 42Shmulevich, I., and Yli-Harja, O. (2000). Localized key finding: Algorithms and applications. Music Perception, 17(4): 531544. DOI: 10.2307/40285832
  43. 43Smith, A. (1973). Feasibility of tracking musical form as a cognitive listening objective. Journal of Research in Music Education, 21(3): 200213. DOI: 10.2307/3345090
  44. 44Temperley, D. (1999). What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Perception, 17(1): 65100. DOI: 10.2307/40285812
  45. 45Tzanetakis, G., and Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5): 293302. DOI: 10.1109/TSA.2002.800560
  46. 46Tzanetakis, G., Ermolinskyi, A., and Cook, P. (2003). Pitch histograms in audio and symbolic music information retrieval. Journal of New Music Research, 32(2): 143152. DOI: 10.1076/jnmr.32.2.143.16743
  47. 47van Kranenburg, P. (2006). Composer attribution by quantifying compositional strategies. In International Conference on Music Information Retrieval (ISMIR), pages 375376.
  48. 48Vapnik, V. (1998). Statistical Learning Theory. Wiley.
  49. 49Weiß, C., Klauk, S., Gotham, M., Müller, M., and Kleinertz, R. (2020). Discourse not dualism: An interdisciplinary dialogue on sonata form in Beethoven’s early piano sonatas. In International Society for Music Information Retrieval Conference, pages 199206.
  50. 50Zhu, Y., and Kankanhalli, M. S. (2006). Precise pitch profile feature extraction from musical audio for key detection. IEEE Transactions on Multimedia, 8(3): 575584. DOI: 10.1109/TMM.2006.870727
DOI: https://doi.org/10.5334/tismir.83 | Journal eISSN: 2514-3298
Language: English
Submitted on: Nov 28, 2020
Accepted on: Oct 7, 2021
Published on: Dec 3, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Dror Chawin, Uri B. Rom, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.