References
- 1Albrecht, J., and Shanahan, D. (2013). The use of large corpora to train a new type of key-finding algorithm: An improved treatment of the minor mode. Music Perception: An Interdisciplinary Journal, 31(1): 59–67. DOI: 10.1525/mp.2013.31.1.59
- 2Aldwell, E., Schachter, C., and Cadwallader, A. (2018). Harmony and voice leading. Cengage Learning.
- 3Allegraud, P., Bigo, L., Feisthauer, L., Giraud, M., Groult, R., Leguy, E., and Levé, F. (2019). Learning sonata form structure on Mozart’s string quartets. Transactions of the International Society for Music Information Retrieval (TISMIR), 2(1): 82–96. DOI: 10.5334/tismir.27
- 4Bigo, L., Giraud, M., Groult, R., Guiomard-Kagan, N., and Levé, F. (2017). Sketching sonata form structure in selected classical string quartets. In International Society for Music Information Retrieval Conference.
- 5Briot, J.-P., Hadjeres, G., and Pachet, F.-D. (2020). Deep Learning Techniques for Music Generation. Springer. DOI: 10.1007/978-3-319-70163-9
- 6Caplin, W. E. (1998). Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven. Oxford University Press, USA.
- 7Caplin, W. E., Hepokoski, J., and Webster, J. (2009). Musical Form, Forms & Formenlehre: Three Methodological Reflections. Leuven University Press.
- 8Chen, T.-P., and Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In International Society for Music Information Retrieval Conference, pages 90–97.
- 9Chen, T.-P., and Su, L. (2021). Attend to chords: Improving harmonic analysis of symbolic music using transformer-based models. Transactions of the International Society for Music Information Retrieval, 4(1): 1–13. DOI: 10.5334/tismir.65
- 10Feisthauer, L., Bigo, L., and Giraud, M. (2019). Modeling and learning structural breaks in sonata forms. In International Society for Music Information Retrieval Conference.
- 11Feisthauer, L., Bigo, L., Giraud, M., and Levé, F. (2020). Estimating keys and modulations in musical pieces. In 17th Sound and Music Computing Conference.
- 12Fucks, W. (1962). Mathematical analysis of formal structure of music. IRE Transactions on Information Theory, 8(5): 225–228. DOI: 10.1109/TIT.1962.1057746
- 13Gedik, A. C., and Bozkurt, B. (2010). Pitch-frequency histogram-based music information retrieval for Turkish music. Signal Processing, 90(4): 1049–1063. DOI: 10.1016/j.sigpro.2009.06.017
- 14Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.
- 15Hentschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The Annotated Mozart Sonatas: Score, harmony, and cadence. Transactions of the International Society for Music Information Retrieval, 4(1): 67–80. DOI: 10.5334/tismir.63
- 16Hepokoski, J., and Darcy, W. (2006). Elements of sonata theory: Norms, types, and deformations in the lateeighteenth-century sonata. Oxford University Press. DOI: 10.1093/acprof:oso/9780195146400.001.0001
- 17Jiang, D.-N., Lu, L., Zhang, H.-J., Tao, J.-H., and Cai, L.-H. (2002). Music type classification by spectral contrast feature. In Proceedings of the IEEE International Conference on Multimedia and Expo, volume 1, pages 113–116.
IEEE . DOI: 10.1109/ICME.2002.1035731 - 18Jiang, N., and Müller, M. (2013). Automated methods for analyzing music recordings in sonata form. In International Society for Music Information Retrieval Conference, pages 595–600.
- 19Koduri, G. K., Gulati, S., Rao, P., and Serra, X. (2012). Rāga recognition based on pitch distribution methods. Journal of New Music Research, 41(4): 337–350. DOI: 10.1080/09298215.2012.735246
- 20Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. Oxford University Press.
- 21Krumhansl, C. L., and Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89(4): 334–368. DOI: 10.1037/0033-295X.89.4.334
- 22Lidy, T., and Rauber, A. (2005). Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. In International Conference on Music Information Retrieval (ISMIR), pages 34–41.
- 23Lidy, T., Rauber, A., Pertusa, A., and Quereda, J. M. I. (2007). Improving genre classification by combination of audio and symbolic descriptors using a transcription system. In International Conference on Music Information Retrieval (ISMIR), pages 61–66.
- 24Lieck, R., and Rohrmeier, M. (2020). Modelling hierarchical key structure with pitch scapes. In Proceedings of the 21st International Society for Music Information Retrieval Conference.
- 25Micchi, G., Gotham, M., and Giraud, M. (2020). Not all roads lead to Rome: Pitch representation and model architecture for automatic harmonic analysis. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1): 42–54. DOI: 10.5334/tismir.45
- 26Nápoles López, N., Arthur, C., and Fujinaga, I. (2019). Key-finding based on a hidden Markov model and key profiles. In 6th International Conference on Digital Libraries for Musicology, pages 33–37. DOI: 10.1145/3358664.3358675
- 27Nápoles López, N., Feisthauer, L., Levé, F., and Fujinaga, I. (2020). On local keys, modulations, and tonicizations: A dataset and methodology for evaluating changes of key. In 7th International Conference on Digital Libraries for Musicology, pages 18–26. DOI: 10.1145/3424911.3425515
- 28Panagakis, I., Benetos, E., and Kotropoulos, C. (2008). Music genre classification: A multilinear approach. In International Conference on Music Information Retrieval (ISMIR), pages 583–588.
- 29Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard Duchesnay. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12: 2825–2830.
- 30Quinn, I. (2010). Are pitch-class profiles really “key for key”? Zeitschrift der Gesellschaft für Musiktheorie [Journal of the German-speaking Society of Music Theory], 7(2): 151–163. DOI: 10.31751/513
- 31Quinn, I., and White, C. W. (2017). Corpus-derived key profiles are not transpositionally equivalent. Music Perception: An Interdisciplinary Journal, 34(5): 531–540. DOI: 10.1525/mp.2017.34.5.531
- 32Reynolds, D. A. (2009). Gaussian mixture models. Encyclopedia of Biometrics, 741: 659–663. DOI: 10.1007/978-0-387-73003-5_196
- 33Rosen, C. (1988). Sonata Forms. Norton.
- 34Sapp, C. S. (2001). Harmonic visualizations of tonal music. In International Computer Music Conference, pages 419–422.
- 35Sapp, C. S. (2005). Visual hierarchical key analysis. Computers in Entertainment (CIE), 3(4): 1–19. DOI: 10.1145/1095534.1095544
- 36Sapp, C. S. (2011). Computational Methods for the Analysis of Musical Structure. PhD thesis, Stanford University, Department of Music.
- 37Schoenberg, A. (1967). Fundamentals of Musical Composition. Faber & Faber London.
- 38Schreiber, H., Weiss, C., and Müller, M. (2020). Local key estimation in classical music recordings: A cross-version study on Schubert’s Winterreise. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 501–505.
IEEE . DOI: 10.1109/ICASSP40776.2020.9054642 - 39Sears, D., Caplin, W. E., and McAdams, S. (2012). Perceiving the classical cadence. Music Perception: An Interdisciplinary Journal, 31(5): 397–417. DOI: 10.1525/mp.2014.31.5.397
- 40Shan, M.-K., and Kuo, F.-F. (2003). Music style mining and classification by melody. IEICE Transactions on Information and Systems, 86(3): 655–659.
- 41Shibata, G., Nishikimi, R., and Yoshii, K. (2020). Music structure analysis based on an LSTM-HSMM hybrid model. In International Society for Music Information Retrieval Conference, pages 15–22.
- 42Shmulevich, I., and Yli-Harja, O. (2000). Localized key finding: Algorithms and applications. Music Perception, 17(4): 531–544. DOI: 10.2307/40285832
- 43Smith, A. (1973). Feasibility of tracking musical form as a cognitive listening objective. Journal of Research in Music Education, 21(3): 200–213. DOI: 10.2307/3345090
- 44Temperley, D. (1999). What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Perception, 17(1): 65–100. DOI: 10.2307/40285812
- 45Tzanetakis, G., and Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5): 293–302. DOI: 10.1109/TSA.2002.800560
- 46Tzanetakis, G., Ermolinskyi, A., and Cook, P. (2003). Pitch histograms in audio and symbolic music information retrieval. Journal of New Music Research, 32(2): 143–152. DOI: 10.1076/jnmr.32.2.143.16743
- 47van Kranenburg, P. (2006). Composer attribution by quantifying compositional strategies. In International Conference on Music Information Retrieval (ISMIR), pages 375–376.
- 48Vapnik, V. (1998). Statistical Learning Theory. Wiley.
- 49Weiß, C., Klauk, S., Gotham, M., Müller, M., and Kleinertz, R. (2020). Discourse not dualism: An interdisciplinary dialogue on sonata form in Beethoven’s early piano sonatas. In International Society for Music Information Retrieval Conference, pages 199–206.
- 50Zhu, Y., and Kankanhalli, M. S. (2006). Precise pitch profile feature extraction from musical audio for key detection. IEEE Transactions on Multimedia, 8(3): 575–584. DOI: 10.1109/TMM.2006.870727
