Have a personal or library account? Click to login
Improving Audio Chord Estimation by Alignment and Integration of Crowd-Sourced Symbolic Music Cover

Improving Audio Chord Estimation by Alignment and Integration of Crowd-Sourced Symbolic Music

Open Access
|Nov 2021

References

  1. 1Burgoyne, J. A., Pugin, L., Kereliuk, C., and Fujinaga, I. (2007). A cross-validated study of modelling strategies for automatic chord recognition in audio. In Proceedings of the 8th International Conference on Music Information Retrieval, pages 251254.
  2. 2Cannam, C., Benetos, E., Davies, M. E., Dixon, S., Landone, C., Levy, M., Mauch, M., Noland, K., and Stowell, D. (2018). MIREX 2018: VAMP plugins from the Centre for Digital Music. Proceedings of the Music Information Retrieval Evaluation eXchange.
  3. 3Chen, T.-P. and Su, L. (2019). Harmony Transformer: Incorporating chord segmentation into harmony recognition. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 259267.
  4. 4Cuvillier, P. and Cont, A. (2014). Coherent time modeling of semi-Markov models with application to real-time audio-to-score alignment. In IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pages 16. IEEE. DOI: 10.1109/MLSP.2014.6958908
  5. 5Ewert, S., Müller, M., Konz, V., Müllensiefen, D., and Wiggins, G. A. (2012). Towards cross-version harmonic analysis of music. IEEE Transactions on Multimedia, 14(3):770782. DOI: 10.1109/TMM.2012.2190047
  6. 6Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200):675701. DOI: 10.1080/01621459.1937.10503522
  7. 7Gasser, S. and Strasser, F. (2018). Multi objective chord estimation. Proceedings of the Music Information Retrieval Evaluation eXchange.
  8. 8Harte, C. (2010). Towards Automatic Extraction of Harmony Information from Music Signals. PhD thesis, Department of Electronic Engineering, Queen Mary University of London.
  9. 9Humphrey, E. J. and Bello, J. P. (2015). Four timely insights on automatic chord estimation. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 673679.
  10. 10Jiang, J., Chen, K., Li, W., and Xia, G. (2018). MIREX 2018 submission: A structural chord representation for automatic large-vocabulary chord transcription. Proceedings of the Music Information Retrieval Evaluation eXchange.
  11. 11Jiang, J., Li, W., and Wu, Y. (2017). Extended abstract for MIREX 2017 submission: Chord recognition using random forest model. Proceedings of the Music Information Retrieval Evaluation eXchange.
  12. 12Konz, V. and Müller, M. (2012). A cross-version approach for harmonic analysis of music recordings. In Müller, M., Goto, M., and Schedl, M., editors, Multimodal Music Processing, volume 3 of Dagstuhl Follow-Ups, pages 5372. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany.
  13. 13Koops, H. V., de Haas, W. B., Bountouridis, D., and Volk, A. (2016). Integration and quality assessment of heterogeneous chord sequences using data fusion. In Proceedings of the 17th International Society for Music Information Retrieval Conference, pages 178184.
  14. 14Koops, H. V., de Haas, W. B., Bransen, J., and Volk, A. (2017). Chord label personalization through deep learning of integrated harmonic intervalbased representations. In Proceedings of the First International Workshop on Deep Learning for Music, pages 1925.
  15. 15Koops, H. V., de Haas, W. B., Burgoyne, J. A., Bransen, J., Kent-Muller, A., and Volk, A. (2019). Annotator subjectivity in harmony annotations of popular music. Journal of New Music Research, 48(3):232252. DOI: 10.1080/09298215.2019.1613436
  16. 16Korzeniowski, F. and Widmer, G. (2016a). Feature learning for chord recognition: The Deep Chroma Extractor. In Proceedings of 17th International Conference on Music Information Retrieval.
  17. 17Korzeniowski, F. and Widmer, G. (2016b). A fully convolutional deep auditory model for musical chord recognition. In Proceedings of the 26th International Workshop on Machine Learning for Signal Processing, pages 16. IEEE. DOI: 10.1109/MLSP.2016.7738895
  18. 18Lee, S.-R., Chien, I., Yeh, T.-C., and Jang, J.-S. R. (2019). MIREX 2019 submission: Chord estimation. Proceedings of the Music Information Retrieval Evaluation eXchange.
  19. 19Li, X., Dong, X. L., Lyons, K., Meng, W., and Srivastava, D. (2012). Truth finding on the deep web: Is the problem solved? Proceedings of the VLDB Endowment, 6(2). DOI: 10.14778/2535568.2448943
  20. 20Macrae, R. (2012). Linking Music Metadata. PhD thesis, Queen Mary University of London.
  21. 21Masada, K. and Bunescu, R. (2019). Chord recognition in symbolic music: A segmental CRF model, segment-level features, and comparative evaluations on classical and popular music. Transactions of the International Society for Music Information Retrieval, 2(1). DOI: 10.5334/tismir.18
  22. 22Mauch, M. (2010). Automatic Chord Transcription from Audio Using Computational Models of Musical Context. PhD thesis, Queen Mary University of London.
  23. 23Mauch, M., Cannam, C., Davies, M., Dixon, S., Harte, C., Kolozali, S., Tidhar, D., and Sandler, M. (2009). OMRAS2 metadata project 2009. In Late-breaking Session at the 10th International Conference on Music Information Retrieval.
  24. 24Maxwell, H. J. (1992). An expert system for harmonic analysis of tonal music. In Proceedings of the First Workshop on AI and Music, pages 2033. AAAI.
  25. 25McFee, B., McVicar, M., Balke, S., Thomé, C., Raffel, C., Lee, D., Nieto, O., Battenberg, E., Ellis, D., Yamamoto, R., Moore, J., Bittner, R., Choi, K., Friesch, P., Stöter, F.-R., Lostanlen, V., Kumar, S., Waloschek, S., Seth, Naktinis, R., Repetto, D., Hawthorne, C. F., Carr, C., Pimenta, W., Viktorin, P., Brossier, P., Santos, J. F., JackieWu, Erik, and Holovaty, A. (2018). librosa/librosa: 0.6.1.
  26. 26McVicar, M., Ni, Y., Santos-Rodriguez, R., and De Bie, T. (2011). Using online chord databases to enhance chord recognition. Journal of New Music Research, 40(2):139152. DOI: 10.1080/09298215.2011.573564
  27. 27McVicar, M., Santos-Rodríguez, R., Ni, Y., and De Bie, T. (2014). Automatic chord estimation from audio: A review of the state of the art. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(2):556575. DOI: 10.1109/TASLP.2013.2294580
  28. 28Ni, Y., McVicar, M., Santos-Rodriguez, R., and De Bie, T. (2013). Understanding effects of subjectivity in measuring chord estimation accuracy. IEEE Transactions on Audio, Speech, and Language Processing, 21(12):26072615. DOI: 10.1109/TASL.2013.2280218
  29. 29Pardo, B. and Birmingham, W. P. (2002). Algorithms for chordal analysis. Computer Music Journal, 26(2):2749. DOI: 10.1162/014892602760137167
  30. 30Pauwels, J., O’Hanlon, K., Gómez, E., and Sandler, M. (2019). 20 years of automatic chord recognition from audio. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 5463.
  31. 31Preston, J. B., Pietras, M., and Robinson, L. (2012). Three views of the “musical work”: Bibliographical control in the music domain. Library Review. DOI: 10.1108/00242531211292060
  32. 32Radicioni, D. and Esposito, R. (2010). BREVE: An HMPerceptron-based chord recognition system. Advances in Music Information Retrieval, pages 143164. DOI: 10.1007/978-3-642-11674-2_7
  33. 33Raffel, C. and Ellis, D. P. (2014). Intuitive analysis, creation and manipulation of MIDI data with pretty_midi. In 15th International Society for Music Information Retrieval Conference Late Breaking and Demo Papers, pages 8493.
  34. 34Raffel, C. and Ellis, D. P. (2015). Large-scale contentbased matching of MIDI and audio files. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 234240.
  35. 35Raffel, C. and Ellis, D. P. (2016). Optimizing DTWbased audio-to-MIDI alignment and matching. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8185. IEEE. DOI: 10.1109/ICASSP.2016.7471641
  36. 36Raphael, C. and Stoddard, J. (2004). Functional harmonic analysis using probabilistic models. Computer Music Journal, 28(3):4552. DOI: 10.1162/0148926041790676
  37. 37Scholz, R. and Ramalho, G. (2008). COCHONUT: Recognizing complex chords from MIDI guitar sequences. In Proceedings of the 9th International Conference on Music Information Retrieval, pages 2732.
  38. 38Scholz, R., Ramalho, G., and Cabral, G. (2016). Cross task study on MIREX recent results: An index for evolution measurement and some stagnation hypotheses. In Proceedings of the 17th International Society for Music Information Retrieval Conference, pages 372378.
  39. 39Sheh, A. and Ellis, D. P. (2003). Chord segmentation and recognition using EM-trained hidden Markov models. In Proceedings of the 4th International Conference on Music Information Retrieval, pages 183189.
  40. 40Sigtia, S., Boulanger-Lewandowski, N., and Dixon, S. (2015). Audio chord recognition with a hybrid recurrent neural network. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 127133.
  41. 41Temperley, D. and Sleator, D. (1999). Modeling meter and harmony: A preference-rule approach. Computer Music Journal, 23(1):1027. DOI: 10.1162/014892699559616
  42. 42Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, pages 99114. DOI: 10.2307/3001913
  43. 43Wakefield, G. H. (1999). Mathematical representation of joint time-chroma distributions. In Proceedings of SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, volume 3807, pages 637646. International Society for Optics and Photonics. DOI: 10.1117/12.367679
  44. 44Winograd, T. (1968). Linguistics and the computer analysis of tonal harmony. Journal of Music Theory, 12(1):249. DOI: 10.2307/842885
  45. 45Wu, Y., Feng, X., and Li, W. (2017). MIREX 2017 submission: Automatic audio chord recognition with MIDI-trained deep feature and BLSTM-CRF sequence decoding model. Proceedings of the Music Information Retrieval Evaluation eXchange.
DOI: https://doi.org/10.5334/tismir.81 | Journal eISSN: 2514-3298
Language: English
Submitted on: Nov 3, 2020
Accepted on: Jul 5, 2021
Published on: Nov 9, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Daphne Odekerken, Hendrik Vincent Koops, Anja Volk, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.