Have a personal or library account? Click to login
Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks Cover

Automatic Transcription of Organ Tablature Music Notation with Deep Neural Networks

Open Access
|Feb 2021

References

  1. 1Alfaro-Contreras, M., Calvo-Zaragoza, J., and Iñesta, J. M. (2019). Approaching End-to-End Optical Music Recognition for Homophonic Scores. 9th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), 11868: 147158. DOI: 10.1007/978-3-030-31321-0_13
  2. 2Ammerbach, E. N. (1575). Ein new künstlich Tabulaturbuch. Nürnberg.
  3. 3Ammerbach, E. N. (1583). Orgel oder Instrument Tabulaturbuch. Nürnberg.
  4. 4Apel, W. (1967). Geschichte der Orgel- und Klaviermusik bis 1700. Bärenreiter, Kassel.
  5. 5Apel, W. (2006). Die Notation der polyphonen Musik 900–1600. Breitkopf & Härtel, Wiesbaden, 5th edition.
  6. 6Awel, M. A., and Abidi, A. I. (2019). Review on Optical Character Recognition. International Research Journal of Engineering and Technology (IRJET), 06(6): 36663669.
  7. 7Bainbridge, D., and Bell, T. (2001). The Challenge of Optical Music Recognition. Computers and the Humanities, 35(2): 95121. DOI: 10.1023/A:1002485918032
  8. 8Becker, C. W. (1963). A Transcription of Elias Nikolaus Ammerbach’s Orgel oder Instrument Tabulaturbuch. PhD thesis, University of Rochester.
  9. 9Bellermann, H. (1858). Die Mensuralnoten und Taktzeichen des XV. und XVI. Jahrhunderts. Georg Reimer, Berlin.
  10. 10Calvo-Zaragoza, J., Hajič, J. Jr., and Pacha, A. (2020). Understanding Optical Music Recognition. ACM Computing Surveys, 53(4). DOI: 10.1145/3397499
  11. 11Calvo-Zaragoza, J., and Rizo, D. (2018). End-to-end Neural Optical Music Recognition of Monophonic Scores. Applied Sciences, 8(4). DOI: 10.3390/app8040606
  12. 12Calvo-Zaragoza, J., Rizo, D., and Quereda, J. M. I. (2016). Two (Note) Heads are Better Than One: Pen-Based Multimodal Interaction with Music Scores. In Proceedings of the 17th International Society for Music Information Retrieval Conference, pages 509514.
  13. 13Calvo-Zaragoza, J., Toselli, A. H., and Vidal, E. (2019). Handwritten Music Recognition for Mensural Notation with Convolutional Recurrent Neural Networks. Pattern Recognition Letters, 128: 115121. DOI: 10.1016/j.patrec.2019.08.021
  14. 14Calvo-Zaragoza, J., Valero-Mas, J. J., and Pertusa, A. (2017). End-to-end Optical Music Recognition Using Neural Networks. Proceedings of the 18th International Society for Music Information Retrieval Conference, pages 472477.
  15. 15Caruana, R. (1997). Multitask Learning. Machine Learning, 28(1): 4175. DOI: 10.1023/A:1007379606734
  16. 16Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 103111. Association for Computational Linguistics. DOI: 10.3115/v1/W14-4012
  17. 17Dutta, K., Krishnan, P., Mathew, M., and Jawahar, C. V. (2018). Towards Accurate Handwritten Word Recognition for Hindi and Bangla. Communications in Computer and Information Science (CCIS), 841: 470480. DOI: 10.1007/978-981-13-0020-2_41
  18. 18Feng, Z., Yang, Z., Jin, L., Huang, S., and Sun, J. (2017). Robust Shared Feature Learning for Script and Handwritten/Machine-Printed Identification. Pattern Recognition Letters, 100: 613. DOI: 10.1016/j.patrec.2017.09.016
  19. 19German UNESCO Commission. (2018). Jahrbuch der Deutschen UNESCO-Kommission 2017–2018.
  20. 20Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
  21. 21Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In Proceedings of the 23rd International Conference on Machine Learning, page 369376, New York, NY, USA. Association for Computing Machinery. DOI: 10.1145/1143844.1143891
  22. 22Hannun, A. (2017). Sequence Modeling with CTC. DOI: 10.23915/distill.00008
  23. 23Horyna, M. (2018). Medieval Organ Tablature on a Manuscript Fragment from the National Museum Library. Musicalia, 10(1–2): 642. DOI: 10.1515/muscz-2018-0001
  24. 24Huang, Y.-H., Chen, X., Beck, S., Burn, D., and Van Gool, L. (2015). Automatic Handwritten Mensural Notation Interpreter: From Manuscript to MIDI Performance. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 7985.
  25. 25Hulková, M. (2015). Central European Connections of Six Manuscript Organ Tablature Books of the Reformation Era from the Region of Zips (Szepes, Spiš). Studia Musicologica, 56(1): 337. DOI: 10.1556/6.2015.56.1.1
  26. 26Iqbal, H. (2018). PlotNeuralNet. DOI: 10.5281/zenodo.2526396
  27. 27Maul, M., and Wollny, P., editors (2007). Weimarer Orgeltabulatur: die frühesten Notenhandschriften Johann Sebastian Bachs sowie Abschriften seines Schülers Johann Martin Schubart. Bärenreiter, Kassel, New York.
  28. 28Motnik, M. (2011). Deutsche Tabulatur: Gebreuchlich oder verdrießlich? Musicological Annual, 47(2): 125137. DOI: 10.4312/mz.47.2.125-137
  29. 29Müller-Schmidt, H.-T. (2017). Orgel oder Instrumenttabulaturbuch 1583 von Elias Nikolaus Ammerbach. https://imslp.org/wiki/Special:ReverseLookup/505757.
  30. 30Pansare, S., and Joshi, D. (2012). A Survey on Optical Character Recognition Techniques. International Journal of Science and Research (IJSR), 3(12): 12471249.
  31. 31Patel, M., and Thakkar, S. P. (2015). Handwritten Character Recognition in English: A Survey. International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), 4(2): 345350. DOI: 10.17148/IJARCCE.2015.4278
  32. 32Purohit, A., and Chauhan, S. S. (2016). A Literature Survey on Handwritten Character Recognition. International Journal of Computer Science and Information Technologies (IJCSIT), 7(1): 15.
  33. 33Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R., Guedes, C., and Cardoso, J. S. (2012). Optical Music Recognition: State-of-the-art and Open Issues. International Journal of Multimedia Information Retrieval (IJMIR), 1(3): 173190. DOI: 10.1007/s13735-012-0004-6
  34. 34Su, B., and Lu, S. (2017). Accurate Recognition of Words in Scenes without Character Segmentation Using Recurrent Neural Network. Pattern Recognition, 63: 397405. DOI: 10.1016/j.patcog.2016.10.016
  35. 35Tuggener, L., Elezi, I., Schmidhuber, J., and Stadelmann, T. (2018). Deep Watershed Detector for Music Object Recognition. Proceedings of the 19th International Society for Music Information Retrieval Conference, pages 271278.
  36. 36Wojnowska, E. (2016). Thematic Catalogue of 17th-Century Organ Tablatures from the Liegnitz Bibliotheca Rudolphina. Warschau: Biblioteka Narodowa.
  37. 37Wolf, J. (1919). Handbuch der Notationskunde Teil 2. Breitkopf und Härtel.
DOI: https://doi.org/10.5334/tismir.77 | Journal eISSN: 2514-3298
Language: English
Submitted on: Sep 23, 2020
Accepted on: Dec 28, 2020
Published on: Feb 24, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Daniel Schneider, Nikolaus Korfhage, Markus Mühling, Peter Lüttig, Bernd Freisleben, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.