References
- 1Arzt, A., Böck, S., Flossmann, S., Frostel, H., Gasser, M., Liem, C. C., and Widmer, G. (2014). The piano music companion. In Proceedings of the European Conference on Artificial Intelligence (ECAI), pages 1221–1222.
- 2Arzt, A., and Widmer, G. (2010). Towards effective ‘any-time’ music tracking. In Proceedings of the Starting AI Researchers’ Symposium.
- 3Arzt, A., Widmer, G., and Dixon, S. (2008). Automatic page turning for musicians via real-time machine listening. In Proceedings of the European Conference on Artificial Intelligence (ECAI), pages 241–245.
- 4Cont, A. (2006). Realtime audio to score alignment for polyphonic music instruments, using sparse nonnegative constraints and hierarchical HMMs. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
- 5Damm, D., Fremerey, C., Kurth, F., Müller, M., and Clausen, M. (2008). Multimodal presentation and browsing of music. In Proceedings of the International Conference on Multimodal Interfaces (ICMI), pages 205–208. DOI: 10.1145/1452392.1452436
- 6Dannenberg, R. B. (1988). New techniques for enhanced quality of computer accompaniment. In Proceedings of the International Computer Music Conference, pages 243–249.
- 7Dorfer, M., Arzt, A., Böck, S., Durand, A., and Widmer, G. (2016a). Live score following on sheet music images. In Late Breaking Demos at the International Society for Music Information Retrieval Conference (ISMIR).
- 8Dorfer, M., Arzt, A., and Widmer, G. (2016b). Towards end-to-end audio-sheet-music retrieval. In Neural Information Processing Systems (NIPS) End-to-End Learning for Speech and Audio Processing Workshop.
- 9Dorfer, M., Arzt, A., and Widmer, G. (2017). Learning audio-sheet music correspondences for score identification and offline alignment. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 115–122.
- 10Dorfer, M., Hajič, J., Arzt, A., Frostel, H., and Widmer, G. (2018a). Learning audio-sheet music correspondences for cross-modal retrieval and piece identification. Transactions of the International Society for Music Information Retrieval, 1(1): 22–33. DOI: 10.5334/timsir.12
- 11Dorfer, M., Henkel, F., and Widmer, G. (2018b). Learning to listen, read, and follow: Score following as a reinforcement learning game. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 784–791.
- 12Dorfer, M., Schlüter, J., Vall, A., Korzeniowski, F., and Widmer, G. (2018c). End-to-end cross-modality retrieval with CCA projections and pairwise ranking loss. International Journal of Multimedia Information Retrieval, 7(2): 117–128. DOI: 10.1007/s13735-018-0151-5
- 13Fremerey, C., Clausen, M., Ewert, S., and Müller, M. (2009). Sheet music-audio identification. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 645–650.
- 14Fremerey, C., Müller, M., and Clausen, M. (2010). Handling repeats and jumps in score-performance synchronization. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 243–248.
- 15Fremerey, C., Müller, M., Kurth, F., and Clausen, M. (2008). Automatic mapping of scanned sheet music to audio recordings. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 413–418.
- 16Grachten, M., Gasser, M., Arzt, A., and Widmer, G. (2013). Automatic alignment of music performances with structural differences. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 607–612.
- 17Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., Engel, J., Oore, S., and Eck, D. (2018). Onsets and frames: Dual-objective piano transcription. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 50–57.
- 18Henkel, F., Balke, S., Dorfer, M., and Widmer, G. (2019). Score following as a multi-modal reinforcement learning problem. Transactions of the International Society for Music Information Retrieval, 2(1): 67–81. DOI: 10.5334/tismir.31
- 19İzmirli, Ö., and Sharma, G. (2012). Bridging printed music and audio through alignment using a midlevel score representation. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 61–66.
- 20Jiang, Y., Ryan, F., Cartledge, D., and Raphael, C. (2019). Offline score alignment for realistic music practice. In Sound and Music Computing Conference.
- 21Joder, C., Essid, S., and Richard, G. (2011). A conditional random field framework for robust and scalable audio-to-score matching. IEEE Transactions on Audio, Speech, and Language Processing, 19(8): 2385–2397. DOI: 10.1109/TASL.2011.2134092
- 22Kurth, F., Müller, M., Fremerey, C., Chang, Y., and Clausen, M. (2007). Automated synchronization of scanned sheet music with audio recordings. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 261–266.
- 23Müller, M. (2015). Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Springer.
- 24Müller, M., and Appelt, D. (2008). Path-constrained partial music synchronization. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 65–68. DOI: 10.1109/ICASSP.2008.4517547
- 25Müller, M., Arzt, A., Balke, S., Dorfer, M., and Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1): 52–62. DOI: 10.1109/MSP.2018.2868887
- 26Nakamura, E., Nakamura, T., Saito, Y., Ono, N., and Sagayama, S. (2014). Outer-product hidden Markov model and polyphonic MIDI score following. Journal of New Music Research, 43(2): 183–201. DOI: 10.1080/09298215.2014.884145
- 27Nakamura, T., Nakamura, E., and Sagayama, S. (2015). Real-time audio-to-score alignment of music performances containing errors and arbitrary repeats and skips. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(2): 329–339. DOI: 10.1109/TASLP.2015.2507862
- 28NIST. (2016). NIST Open Speech-Activity-Detection Evaluation Plan.
https://www.nist.gov/system/files/documents/itl/iad/mig/Open_SAD_Eval_Plan_v10.pdf . - 29Pardo, B., and Birmingham, W. (2005). Modeling form for on-line following of musical performances. In Proceedings of the National Conference on Artificial Intelligence, volume 20, pages 1018–1023.
- 30Shan, M., and Tsai, T. (2020). Improved handling of repeats and jumps in audio-sheet image synchronization. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 62–69.
- 31Thomas, V., Fremerey, C., Müller, M., and Clausen, M. (2012). Linking sheet music and audio – challenges and new approaches. In Multimodal Music Processing, volume 3, pages 1–22.
- 32Tsai, T. (2020). Towards linking the Lakh and IMSLP datasets. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 546–550. DOI: 10.1109/ICASSP40776.2020.9053815
- 33Tsai, T., Yang, D., Shan, M., Tanprasert, T., and Jenrungrot, T. (2020). Using cell phone pictures of sheet music to retrieve MIDI passages. IEEE Transactions on Multimedia, 22(12): 3115–3127. DOI: 10.1109/TMM.2020.2973831
- 34Wang, A. (2003). An industrial strength audio search algorithm. In Proceedings of the International Conference on Music Information Retrieval (ISMIR).
- 35Yang, D., Tanprasert, T., Jenrungrot, T., Shan, M., and Tsai, T. (2019). MIDI passage retrieval using cell phone pictures of sheet music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 916–923.
- 36Yang, D., and Tsai, T. (2020). Camera-based piano sheet music identification. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 481–488.
