References
- 1Aldwell, E., Schachter, C., and Cadwallader, A. C. (2011). Harmony & Voice Leading. Schirmer/Cengage Learning, Boston, MA, 4th edition.
- 2Bigo, L., Feisthauer, L., Giraud, M., and Levé, F. (2018). Relevance of musical features for cadence detection. In 19th International Society for Music Information Retrieval Conference, Paris.
- 3Broze, Y., and Shanahan, D. (2013). Diachronic changes in jazz harmony: A cognitive perspective. Music Perception: An Interdisciplinary Journal, 31(1): 32–45. DOI: 10.1525/mp.2013.31.1.32
- 4Buhrmester, M., Kwang, T., and Gosling, S. D. (2011). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1): 3–5. DOI: 10.1177/1745691610393980
- 5Burgoyne, J. A., Wild, J., and Fujinaga, I. (2011). An expert ground-truth set for audio chord recognition and music analysis. 12th International Society for Music Information Retrieval Conference, pages 633–638.
- 6Burgoyne, J. A., Wild, J., and Fujinaga, I. (2013).
Compositional data analysis of harmonic structures in popular music . In Yust, J., Wild, J., and Burgoyne, J. A., editors, Mathematics and Computation in Music, volume 7937, pages 52–63. Springer Berlin Heidelberg, Berlin, Heidelberg. DOI: 10.1007/978-3-642-39357-0_4 - 7Cambouropoulos, E. (2016).
The harmonic musical surface and two novel chord representation schemes . In Meredith, D., editor, Computational Music Analysis, pages 31–56. Springer, New York. DOI: 10.1007/978-3-319-25931-4_2 - 8Caplin, W. E. (2001). Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven. Oxford University Press, New York.
- 9Caplin, W. E. (2004). The classical cadence: Conceptions and misconceptions. Journal of the American Musicological Society, 57(1): 51–118. DOI: 10.1525/jams.2004.57.1.51
- 10Chen, T.-P., and Su, L. (2018). Functional harmony recognition of symbolic music data with multitask recurrent neural networks. 19th International Society for Music Information Retrieval Conference, pages 90–97.
- 11Choi, K., Fazekas, G., and Sandler, M. (2016). Textbased LSTM networks for automatic music composition. arXiv preprint arxiv:1604.05358.
- 12Clendinning, J. P., and Marvin, E. W. (2016). The Musician’s Guide to Theory and Analysis. W.W. Norton & Company, New York; London, third edition.
- 13Duane, B. (2019). Melodic patterns and tonal cadences: Bayesian learning of cadential categories from contrapuntal information. Journal of New Music Research, 48(3): 197–216. DOI: 10.1080/09298215.2019.1607396
- 14Duane, B., and Jakubowski, J. (2018). Harmonic clusters and tonal cadences: Bayesian learning without chord identification. Journal of New Music Research, 47(2): 143–165. DOI: 10.1080/09298215.2017.1410181
- 15Flick, U. (2018).
Triangulation . In Denzin, N. K. and Lincoln, Y. S., editors, The SAGE Handbook of Qualitative Research, pages 444–461. SAGE, Los Angeles, fifth edition. DOI: 10.2307/j.ctvddzffm.4 - 16Gauvin, H. L. (2015). “The Times They Were A-Changin”: A database-driven approach to the evolution of musical syntax in popular music from the 1960s. Empirical Musicology Review, 10(3): 215–238. DOI: 10.18061/emr.v10i3.4467
- 17Gjerdingen, R. O. (2007). Music in the Galant Style. Oxford University Press, New York.
- 18Harte, C. (2010). Towards Automatic Extraction of Harmony Information from Music Signals. PhD thesis, Queen Mary University of London, London.
- 19Hentschel, J., and Rohrmeier, M. (2020). Creating and evaluating an annotated corpus using the library ms3. In Digital Music Research Network One-day Workshop, Queen Mary University of London, United Kingdom.
youtu.be/UBY3wuIS4wc . - 20Huron, D. (2020). **harm representation for Western functional harmony.
https://www.humdrum.org/rep/harm . - 21Ito, J. P. (2014). Koch’s metrical theory and Mozart’s music: A corpus study. Music Perception: An Interdisciplinary Journal, 31(3): 205–222. DOI: 10.1525/mp.2014.31.3.205
- 22Jacoby, N., Tishby, N., and Tymoczko, D. (2015). An information theoretic approach to chord categorization and functional harmony. Journal of New Music Research, 44(3): 219–244. DOI: 10.1080/09298215.2015.1036888
- 23Klauk, S., and Kleinertz, R. (2016). Mozart’s Italianate response to Haydn’s Opus 33. Music and Letters, 97(4): 575–621. DOI: 10.1093/ml/gcw102
- 24Kostka, S., Payne, D., and Almén, B. (2013). Tonal Harmony, with an Introduction to Twentieth-Century Music. McGraw-Hill, New York, 7th edition.
- 25Kutlu, M., McDonnell, T., Lease, M., and Elsayed, T. (2020). Annotator rationales for labeling tasks in crowdsourcing. Journal of Artificial Intelligence Research, 69: 143–189. DOI: 10.1613/jair.1.12012
- 26Laitz, S. G. (2015). The Complete Musician: An Integrated Approach to Theory, Analysis and Listening. Oxford University Press, New York, 4th edition.
- 27Mandelbrot, B. (1953).
An informational theory of the statistical structure of language . In Jackson, W., editor, Communication Theory, pages 486–502. Butterworths Scientific Publications, London. - 28Mauch, M., MacCallum, R. M., Levy, M., and Leroi, A. M. (2015). The evolution of popular music: USA 1960–2010. Royal Society Open Science, 2(5):
150081 . DOI: 10.1098/rsos.150081 - 29Moss, F. C. (2019). Transitions of Tonality: A Model-Based Corpus Study. PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- 30Moss, F. C., Neuwirth, M., Harasim, D., and Rohrmeier, M. (2019). Statistical characteristics of tonal harmony: A corpus study of Beethoven’s string quartets. PLoS One, 14(6). DOI: 10.1371/journal.pone.0217242
- 31Moss, F. C., Souza, W. F., and Rohrmeier, M. (2020). Harmony and form in Brazilian Choro: A corpus-driven approach to musical style analysis. Journal of New Music Research, pages 1–22. DOI: 10.1080/09298215.2020.1797109
- 32Neuwirth, M., and Bergé, P., editors. (2015). What is a Cadence? Theoretical and Analytical Perspectives on Cadences in the Classical Repertoire. Leuven University Press, Leuven. DOI: 10.2307/j.ctt14jxt45
- 33Nguyen, A. T., Halpern, M., Wallace, B. C., and Lease, M. (2016). Probabilistic modeling for crowdsourcing partially-subjective ratings. 4th AAAI Conference on Human Computation and Crowdsourcing (HCOMP), pages 149–158.
- 34Pardo, B., and Birmingham, W. P. (2002). Algorithms for chordal analysis. Computer Music Journal, 26(2): 27–49. DOI: 10.1162/014892602760137167
- 35Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic Bulletin & Review, 21: 1112–1130. DOI: 10.3758/s13423-014-0585-6
- 36Plath, W., and Rehm, W., editors. (1986). Klaviersonaten, volume 1–2. Bärenreiter, Kassel, Neue Mozart-Ausgabe IX/25th edition.
- 37Quinn, I., and Mavromatis, P. (2011). Voice-leading prototypes and harmonic function in two chorale corpora. In Mathematics and Computation in Music: Third International Conference, Lecture notes in computer science, pages 230–240.
Springer , Heidelberg. DOI: 10.1007/978-3-642-21590-2_18 - 38Rohrmeier, M., and Cross, I. (2008). Statistical properties of tonal harmony in Bach’s chorales. In Proceedings of the 10th International Conference on Music Perception and Cognition, pages 619–627.
Hokkaido University Sapporo , Japan. - 39Rohrmeier, M., and Neuwirth, M. (2015).
Towards a syntax of the Classical cadence . In Neuwirth, M. and Bergé, P., editors, What Is a Cadence? Theoretical and Analytical Perspectives on Cadences in the Classical Repertoire, pages 285–336. Leuven University Press, Leuven. DOI: 10.2307/j.ctt14jxt45.12 - 40Schmalfeldt, J. (1992). Cadential processes: The evaded cadence and the “One More Time” technique. Journal of Musicological Research, 12(1–2): 1–52. DOI: 10.1080/01411899208574658
- 41Sears, D. R. W. (2017a). The Classical Cadence as a Closing Schema: Learning, Memory, and Perception. PhD thesis, McGill University, Montreal, Canada.
- 42Sears, D. R. W. (2017b). Family resemblance and the classical cadence typology: Classification using phylogenetic trees. Psychology, 4: 328–350.
- 43Sears, D. R. W., Pearce, M. T., Caplin, W. E., and McAdams, S. (2018). Simulating melodic and harmonic expectations for tonal cadences using probabilistic models. Journal of New Music Research, 47(1): 29–52. DOI: 10.1080/09298215.2017.1367010
- 44Serrà, J., Corral, Á., Boguñá, M., Haro, M., and Arcos, J. L. (2012). Measuring the evolution of contemporary Western popular music. Scientific Reports, 2(521). DOI: 10.1038/srep00521
- 45Temperley, D. (2000). The line of fifths. Music Analysis, 19(3): 289–319. DOI: 10.1111/1468-2249.00122
- 46Temperley, D. (2004). The Cognition of Basic Musical Structures. The MIT Press, Cambridge, MA.
- 47Temperley, D. (2009). A unified probabilistic model for polyphonic music analysis. Journal of New Music Research, 38(1): 3–18. DOI: 10.1080/09298210902928495
- 48Temperley, D. (2011). Composition, perception, and Schenkerian theory. Music Theory Spectrum, 33(2): 146–168. DOI: 10.1525/mts.2011.33.2.146
- 49Temperley, D., and de Clercq, T. (2013). Statistical analysis of harmony and melody in rock music. Journal of New Music Research, 42(3): 187–204. DOI: 10.1080/09298215.2013.788039
- 50Tymoczko, D., Gotham, M., Cuthbert, M. S., and Ariza, C. (2019). The RomanText format: A flexible and standard method for representing roman numeral analyses. 20th International Society for Music Information Retrieval Conference, pages 123–129.
- 51van Kranenburg, P., and Karsdorp, F. (2014). Cadence detection in Western traditional stanzaic songs using melodic and textual features. 15th International Society for Music Information Retrieval Conference, pages 391–396.
- 52Vicente-Saez, R., and Martinez-Fuentes, C. (2018). Open Science now: A systematic literature review for an integrated definition. Journal of Business Research, 88: 428–436. DOI: 10.1016/j.jbusres.2017.12.043
- 53Weiß, C., Mauch, M., Dixon, S., and Müller, M. (2019). Investigating style evolution of Western classical music: A computational approach. Musicae Scientiae, 23(4): 486–507. DOI: 10.1177/1029864918757595
- 54White, C. W., and Quinn, I. (2016). The Yale-Classical Archives Corpus. Empirical Musicology Review, 11(1): 50. DOI: 10.18061/emr.v11i1.4958
- 55White, C. W., and Quinn, I. (2018). Chord context and harmonic function in tonal music. Music Theory Spectrum, 40(2): 314–335. DOI: 10.1093/mts/mty021
- 56Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3(1). DOI: 10.1038/sdata.2016.18
- 57Zalkow, F., Weiß, C., and Müller, M. (2017). Exploring tonal-dramatic relationships in Richard Wagner’s Ring cycle. In 18th International Society for Music Information Retrieval Conference, pages 642–648,
Suzhou , China. - 58Zanette, D. H. (2006). Zipf’s Law and the creation of musical context. Musicae Scientiae, 10(1): 3–18. DOI: 10.1177/102986490601000101
