References
- 1Aldwell, E., Schachter, C., & Cadwallader, A. (2010). Harmony and Voice Leading. Cengage Learning, 4th edition.
- 2Bigo, L., & Andreatta, M. (2016).
Topological Structures in Computer-Aided Music Analysis . In Meredith, D., editor, Computational Music Analysis, pages 57–80. Springer, Berlin. DOI: 10.1007/978-3-319-25931-4_3 - 3Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3: 993–1022.
- 4Chew, E. (2000). Towards a Mathematical Model of Tonality. Doctoral dissertation, Massachussets Institute of Technology, Cambridge, MA.
- 5Clough, J., & Myerson, G. (1985). Variety and multiplicity in diatonic systems. Journal of Music Theory, 29(2), 249–270. DOI: 10.2307/843615
- 6Cohn, R. (1997). Neo-Riemannian operations, parsimonious trichords, and their “Tonnetz” representations. Journal of Music Theory, 41(1), 1–66. DOI: 10.2307/843761
- 7Cohn, R. (2012). Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford University Press, Oxford. DOI: 10.1093/acprof:oso/9780199772698.001.0001
- 8Douthett, J., & Steinbach, P. (1998). Parsimonious graphs: A study in parsimony, contextual transformations and modes of limited transposition. Journal of Music Theory, 42(2), 241–263. DOI: 10.2307/843877
- 9Euler, L. (1739). Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae. Ex Typographia Academiae Scientiarum, St. Petersburg.
- 10Fiore, T. M., & Noll, T. (2011).
Commuting groups and the topos of triads . In Agon, C., Amiot, E., Andreatta, M., Assayag, G., Bresson, J., & Manderau, J., editors, Mathematics and Computation in Music, volume 6726 of Lecture Notes in Artificial Intelligence. Springer, Berlin. DOI: 10.1007/978-3-642-21590-2_6 - 11Gárdonyi, Z., & Nordhoff, H. (2002). Harmonik. Möseler Verlag, Wolfenbüttel.
- 12Griffiths, T., Steyvers, M., Blei, D., & Tenenbaum, J. (2005). Integrating topics and syntax. Advances in Neural Information Processing Systems, 17, 537–544.
- 13Haas, B. (2004). Die neue Tonalität von Schubert bis Webern: Hören und Analysieren nach Albert Simon. Florian Noetzel, Wilhelmshaven.
- 14Harasim, D., Noll, T., & Rohrmeier, M. (2019).
Distant neighbors and interscalar contiguities . In Montiel, M., Gomez-Martin, F., & Agustín-Aquino, O. A., editors, Mathematics and Computation in Music, Lecture Notes in Computer Science, pages 172–184. Springer International Publishing. DOI: 10.1007/978-3-030-21392-3_14 - 15Harasim, D., Schmidt, S. E., & Rohrmeier, M. (2016). Bridging scale theory and geometrical approaches to harmony: The voice-leading duality between complementary chords. Journal of Mathematics and Music, 10(3), 193–209. DOI: 10.1080/17459737.2016.1216186
- 16Hostinský, O. (1879). Die Lehre von den musikalischen Klängen: Ein Beitrag zur aesthetischen Begründung der Harmonielehre. H. Dominicus, Prague.
- 17Hu, D. J., & Saul, L. K. (2009a). A probabilistic topic model for music analysis. In 22nd Conference on Neural Information Processing Systems, Workshop on Applications for Topic Models: Text and Beyond.
- 18Hu, D. J., & Saul, L. K. (2009b). A probabilistic topic model for unsupervised learning of musical keyprofiles. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pages 441–446.
- 19Huron, D., & Veltman, J. (2006). A cognitive approach to medieval mode: Evidence for an historical antecedent to the major/minor system. Empirical Musicology Review, 1(1). DOI: 10.18061/1811/24072
- 20Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y., & LeCun, Y., editors, 3rd International Conference on Learning Representations.
- 21Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S. (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15443–8. DOI: 10.1073/pnas.1300272110
- 22Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. Oxford University Press, New York.
- 23Krumhansl, C. L. (1998). Perceived triad distance: Evidence supporting the psychological reality of neo-Riemannian transformations. Journal of Music Theory, 42(2), 265–281. DOI: 10.2307/843878
- 24Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89(4), 334–368. DOI: 10.1037/0033-295X.89.4.334
- 25Lerdahl, F., & Jackendoff, R. S. (1983). A Generative Theory of Tonal Music. MIT Press, Cambridge, MA.
- 26Milne, A. J., & Holland, S. (2016). Empirically testing Tonnetz, voice-leading, and spectral models of perceived triadic distance. Journal of Mathematics and Music, 10(1), 59–85. DOI: 10.1080/17459737.2016.1152517
- 27Minka, T., & Winn, J. (2009).
Gates . In Advances in Neural Information Processing Systems, pages 1073–1080. - 28Moss, F. C. (2019). Transitions of Tonality: A Model- Based Corpus Study. Doctoral dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- 29Moss, F. C., Loayza, T., & Rohrmeier, M. (2019). pitchplots. DOI: 10.5281/zenodo.3265393
- 30Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019).
PyTorch: An imperative style, highperformance deep learning library . In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., & Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc. - 31Riemann, H. (1896). Dictionary of Music. Augener, London.
- 32Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35–53. DOI: 10.1080/17459737.2011.573676
- 33Rohrmeier, M. (2020). The syntax of jazz harmony: Diatonic tonality, phrase structure, and form. Music Theory and Analysis (MTA), 7(1), 1–63. DOI: 10.11116/MTA.7.1.1
- 34Schenker, H. (1935). Der freie Satz. Universal Edition, Wien.
- 35Schoenberg, A. (1969). Structural Functions of Harmony. Norton, New York.
- 36Selfridge-Field, E., editor (1997). Beyond MIDI: The Handbook of Musical Codes. MIT Press, Cambridge, MA.
- 37Steyvers, M., & Griffiths, T. (2007).
Probabilistic topic models . In Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W., editors, Handbook of Latent Semantic Analysis, pages 424–440. Lawrence Erlbaum Associates, Mahwah, NJ. - 38Temperley, D. (2000). The line of fifths. Music Analysis, 19(3), 289–319. DOI: 10.1111/1468-2249.00122
- 39Toiviainen, P., & Krumhansl, C. L. (2003). Measuring and modeling real-time responses to music: The dynamics of tonality induction. Perception, 32(6), 741–766. DOI: 10.1068/p3312
- 40Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press, Oxford.
- 41von Oettingen, A. (1866). Harmoniesystem in dualer Entwicklung. W. Gläser, Dorpat und Leipzig.
- 42Weber, G. (1851). The Theory of Musical Composition, Treated with a View to a Naturally Consecutive Arrangement of Topics. Messrs Robert Cocks and Co., London.
