Have a personal or library account? Click to login

References

  1. 1Aldwell, E., Schachter, C., & Cadwallader, A. (2010). Harmony and Voice Leading. Cengage Learning, 4th edition.
  2. 2Bigo, L., & Andreatta, M. (2016). Topological Structures in Computer-Aided Music Analysis. In Meredith, D., editor, Computational Music Analysis, pages 5780. Springer, Berlin. DOI: 10.1007/978-3-319-25931-4_3
  3. 3Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3: 9931022.
  4. 4Chew, E. (2000). Towards a Mathematical Model of Tonality. Doctoral dissertation, Massachussets Institute of Technology, Cambridge, MA.
  5. 5Clough, J., & Myerson, G. (1985). Variety and multiplicity in diatonic systems. Journal of Music Theory, 29(2), 249270. DOI: 10.2307/843615
  6. 6Cohn, R. (1997). Neo-Riemannian operations, parsimonious trichords, and their “Tonnetz” representations. Journal of Music Theory, 41(1), 166. DOI: 10.2307/843761
  7. 7Cohn, R. (2012). Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford University Press, Oxford. DOI: 10.1093/acprof:oso/9780199772698.001.0001
  8. 8Douthett, J., & Steinbach, P. (1998). Parsimonious graphs: A study in parsimony, contextual transformations and modes of limited transposition. Journal of Music Theory, 42(2), 241263. DOI: 10.2307/843877
  9. 9Euler, L. (1739). Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide expositae. Ex Typographia Academiae Scientiarum, St. Petersburg.
  10. 10Fiore, T. M., & Noll, T. (2011). Commuting groups and the topos of triads. In Agon, C., Amiot, E., Andreatta, M., Assayag, G., Bresson, J., & Manderau, J., editors, Mathematics and Computation in Music, volume 6726 of Lecture Notes in Artificial Intelligence. Springer, Berlin. DOI: 10.1007/978-3-642-21590-2_6
  11. 11Gárdonyi, Z., & Nordhoff, H. (2002). Harmonik. Möseler Verlag, Wolfenbüttel.
  12. 12Griffiths, T., Steyvers, M., Blei, D., & Tenenbaum, J. (2005). Integrating topics and syntax. Advances in Neural Information Processing Systems, 17, 537544.
  13. 13Haas, B. (2004). Die neue Tonalität von Schubert bis Webern: Hören und Analysieren nach Albert Simon. Florian Noetzel, Wilhelmshaven.
  14. 14Harasim, D., Noll, T., & Rohrmeier, M. (2019). Distant neighbors and interscalar contiguities. In Montiel, M., Gomez-Martin, F., & Agustín-Aquino, O. A., editors, Mathematics and Computation in Music, Lecture Notes in Computer Science, pages 172–184. Springer International Publishing. DOI: 10.1007/978-3-030-21392-3_14
  15. 15Harasim, D., Schmidt, S. E., & Rohrmeier, M. (2016). Bridging scale theory and geometrical approaches to harmony: The voice-leading duality between complementary chords. Journal of Mathematics and Music, 10(3), 193209. DOI: 10.1080/17459737.2016.1216186
  16. 16Hostinský, O. (1879). Die Lehre von den musikalischen Klängen: Ein Beitrag zur aesthetischen Begründung der Harmonielehre. H. Dominicus, Prague.
  17. 17Hu, D. J., & Saul, L. K. (2009a). A probabilistic topic model for music analysis. In 22nd Conference on Neural Information Processing Systems, Workshop on Applications for Topic Models: Text and Beyond.
  18. 18Hu, D. J., & Saul, L. K. (2009b). A probabilistic topic model for unsupervised learning of musical keyprofiles. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009), pages 441446.
  19. 19Huron, D., & Veltman, J. (2006). A cognitive approach to medieval mode: Evidence for an historical antecedent to the major/minor system. Empirical Musicology Review, 1(1). DOI: 10.18061/1811/24072
  20. 20Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y., & LeCun, Y., editors, 3rd International Conference on Learning Representations.
  21. 21Koelsch, S., Rohrmeier, M., Torrecuso, R., & Jentschke, S. (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 154438. DOI: 10.1073/pnas.1300272110
  22. 22Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. Oxford University Press, New York.
  23. 23Krumhansl, C. L. (1998). Perceived triad distance: Evidence supporting the psychological reality of neo-Riemannian transformations. Journal of Music Theory, 42(2), 265281. DOI: 10.2307/843878
  24. 24Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review, 89(4), 334368. DOI: 10.1037/0033-295X.89.4.334
  25. 25Lerdahl, F., & Jackendoff, R. S. (1983). A Generative Theory of Tonal Music. MIT Press, Cambridge, MA.
  26. 26Milne, A. J., & Holland, S. (2016). Empirically testing Tonnetz, voice-leading, and spectral models of perceived triadic distance. Journal of Mathematics and Music, 10(1), 5985. DOI: 10.1080/17459737.2016.1152517
  27. 27Minka, T., & Winn, J. (2009). Gates. In Advances in Neural Information Processing Systems, pages 10731080.
  28. 28Moss, F. C. (2019). Transitions of Tonality: A Model- Based Corpus Study. Doctoral dissertation, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  29. 29Moss, F. C., Loayza, T., & Rohrmeier, M. (2019). pitchplots. DOI: 10.5281/zenodo.3265393
  30. 30Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, highperformance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., dAlché-Buc, F., Fox, E., & Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 80248035. Curran Associates, Inc.
  31. 31Riemann, H. (1896). Dictionary of Music. Augener, London.
  32. 32Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 3553. DOI: 10.1080/17459737.2011.573676
  33. 33Rohrmeier, M. (2020). The syntax of jazz harmony: Diatonic tonality, phrase structure, and form. Music Theory and Analysis (MTA), 7(1), 163. DOI: 10.11116/MTA.7.1.1
  34. 34Schenker, H. (1935). Der freie Satz. Universal Edition, Wien.
  35. 35Schoenberg, A. (1969). Structural Functions of Harmony. Norton, New York.
  36. 36Selfridge-Field, E., editor (1997). Beyond MIDI: The Handbook of Musical Codes. MIT Press, Cambridge, MA.
  37. 37Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. In Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W., editors, Handbook of Latent Semantic Analysis, pages 424440. Lawrence Erlbaum Associates, Mahwah, NJ.
  38. 38Temperley, D. (2000). The line of fifths. Music Analysis, 19(3), 289319. DOI: 10.1111/1468-2249.00122
  39. 39Toiviainen, P., & Krumhansl, C. L. (2003). Measuring and modeling real-time responses to music: The dynamics of tonality induction. Perception, 32(6), 741766. DOI: 10.1068/p3312
  40. 40Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press, Oxford.
  41. 41von Oettingen, A. (1866). Harmoniesystem in dualer Entwicklung. W. Gläser, Dorpat und Leipzig.
  42. 42Weber, G. (1851). The Theory of Musical Composition, Treated with a View to a Naturally Consecutive Arrangement of Topics. Messrs Robert Cocks and Co., London.
DOI: https://doi.org/10.5334/tismir.46 | Journal eISSN: 2514-3298
Language: English
Submitted on: Jan 11, 2020
Accepted on: Aug 28, 2020
Published on: Oct 16, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Robert Lieck, Fabian C. Moss, Martin Rohrmeier, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.