References
- 1Arzt, A. (2016). Flexible and robust music tracking. PhD thesis, Johannes Kepler Universität Linz.
- 2Böck, S., Krebs, F., & Schedl, M. (2012). Evaluating the online capabilities of onset detection methods. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 49–54.
- 3Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9/10), 341–345.
- 4Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J., Zapata, J. R., & Serra, X. (2013). Essentia: An audio analysis library for music information retrieval. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 493–498. Curitiba, Brazil. DOI: 10.1145/2502081.2502229
- 5Byrd, D., & Simonsen, J. G. (2015). Towards a standard testbed for optical music recognition: Definitions, metrics, and page images. Journal of New Music Research, 44(3), 169–195. DOI: 10.1080/09298215.2015.1045424
- 6Cannam, C., Landone, C., & Sandler, M. B. (2010). Sonic Visualiser: An open source application for viewing, analysing, and annotating music audio files. In Proceedings of the International Conference on Multimedia, pages 1467–1468. Florence, Italy. DOI: 10.1145/1873951.1874248
- 7Cano, E., FitzGerald, D., Liutkus, A., Plumbley, M. D., & Stöter, F. (2019). Musical source separation: An introduction. IEEE Signal Processing Magazine, 36(1), 31–40. DOI: 10.1109/MSP.2018.2874719
- 8Chokhonelidze, E. (2010).
Some characteristic features of the voice coordination and harmony in Georgian multipart singing . In Echoes from Georgia: Seventeen Arguments on Georgian Polyphony, pages 135–145. Nova Science Publishers. - 9Cuesta, H., Gómez, E., Martorell, A., & Loáiciga, F. (2018). Analysis of intonation in unison choir singing. In Proceedings of the International Conference of Music Perception and Cognition (ICMPC), pages 125–130. Graz, Austria.
- 10Cuthbert, M. S., & Ariza, C. (2010). Music21: A toolkit for computer-aided musicology and symbolic music data. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 637–642. Utrecht, The Netherlands.
- 11Dzhambazov, G., Srinivasamurthy, A., Sentürk, S., & Serra, X. (2016). On the use of note onsets for improved lyrics-to-audio alignment in Turkish makam music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 716–722. New York City, USA.
- 12Erkvanidze, M. (2016). The Georgian musical system. In Proceedings of the International Workshop on Folk Music Analysis, pages 74–79. Dublin, Ireland.
- 13Ganguli, K. K., & Rao, P. (2018). On the distributional representation of ragas: Experiments with allied raga pairs. Transactions of the International Society for Music Information Retrieval (TISMIR), 1(1), 79–95. DOI: 10.5334/tismir.11
- 14Gasser, M., Arzt, A., Gadermaier, T., Grachten, M., & Widmer, G. (2015). Classical music on the web – user interfaces and data representations. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 571–577. Málaga, Spain.
- 15Godsill, S., Rayner, P., & Cappé, O. (2002).
Digital audio restoration . In Applications of Digital Signal Processing to Audio and Acoustics, pages 133–194. Springer. DOI: 10.1007/0-306-47042-X_4 - 16Gómez, E., Herrera, P., & Gómez-Martin, F. (2013). Computational ethnomusicology: Perspectives and challenges. Journal of New Music Research, 42(2), 111–112. DOI: 10.1080/09298215.2013.818038
- 17Gong, R., Repetto, R. C., & Serra, X. (2017). Creating an a cappella singing audio dataset for automatic jingju singing evaluation research. In Proceedings of the International Workshop on Digital Libraries for Musicology, pages 37–40. DOI: 10.1145/3144749.3144757
- 18Graham, J. (2015). The transcription and transmission of Georgian Liturgical Chant. PhD thesis, Princeton University.
- 19Jeong, D., Kwon, T., Park, C., & Nam, J. (2017). PerformScore: Toward performance visualization with the score on the web browser. In Demos and Late Breaking News of the International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China.
- 20Jgharkava, I. (2016). Pearls of Georgian Chant. CD. Produced by the Georgian Chanting Foundation & Tbilisi State Conservatoire.
- 21Kroher, N., Díaz-Báñez, J. M., Mora, J., & Gómez, E. (2016). Corpus COFLA: A research corpus for the computational study of flamenco music. Journal on Computing and Cultural Heritage (JOCCH), 9(2), 10:1–10:21. DOI: 10.1145/2875428
- 22Lartillot, O., & Toiviainen, P. (2007). MIR in MATLAB (II): A toolbox for musical feature extraction from audio. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 127–130. Vienna, Austria.
- 23McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O. (2015). Librosa: Audio and music signal analysis in python. In Proceedings of the Python Science Conference, pages 18–25. DOI: 10.25080/Majora-7b98e3ed-003
- 24Müller, M., Arzt, A., Balke, S., Dorfer, M., & Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1), 52–62. DOI: 10.1109/MSP.2018.2868887
- 25Müller, M., Grosche, P., & Wiering, F. (2009). Robust segmentation and annotation of folk song recordings. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 735–740. Kobe, Japan.
- 26Müller, M., Rosenzweig, S., Driedger, J., & Scherbaum, F. (2017). Interactive fundamental frequency estimation with applications to ethnomusicological research. In Proceedings of the AES International Conference on Semantic Audio, pages 186–193. Erlangen, Germany.
- 27Müller, M., & Zalkow, F. (2019). FMP notebooks: Educational material for teaching and learning fundamentals of music processing. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands.
- 28Panteli, M. (2018). Computational analysis of world music corpora. PhD thesis, Queen Mary University of London, UK.
- 29Pugin, L., Zitellini, R., & Roland, P. (2014). Verovio: A library for engraving MEI music notation into SVG. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 107–112. Taipei, Taiwan.
- 30Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R. S., Guedes, C., & Cardoso, J. S. (2012). Optical music recognition: State-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3), 173–190. DOI: 10.1007/s13735-012-0004-6
- 31Repetto, R. C., Pretto, N., Chaachoo, A., Bozkurt, B., & Serra, X. (2018). An open corpus for the computational research of Arab-Andalusian music. In Proceedings of the International Conference on Digital Libraries for Musicology, pages 78–86. Paris, France. DOI: 10.1145/3273024.3273025
- 32Repetto, R. C., & Serra, X. (2014). Creating a corpus of Jingju (Beijing Opera) music and possibilities for melodic analysis. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 313–318. Taipei, Taiwan.
- 33Rosenzweig, S. (2017).
Audio processing techniques for analyzing Georgian vocal music . Master Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg. - 34Rosenzweig, S., Scherbaum, F., & Müller, M. (2019). Detecting stable regions in frequency trajectories for tonal analysis of traditional Georgian vocal music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 352–359. Delft, The Netherlands.
- 35Röwenstrunk, D., Prätzlich, T., Betzwieser, T., Müller, M., Szwillus, G., & Veit, J. (2015). Das Gesamtkunstwerk Oper aus Datensicht – Aspekte des Umgangs mit einer heterogenen Datenlage im BMBF-Projekt “Freischütz Digital”. Datenbank-Spektrum, 15(1), 65–72. DOI: 10.1007/s13222-015-0179-0
- 36Salamon, J., & Gómez, E. (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6), 1759–1770. DOI: 10.1109/TASL.2012.2188515
- 37Salamon, J., Gómez, E., Ellis, D. P. W., & Richard, G. (2014). Melody extraction from polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Processing Magazine, 31(2), 118–134. DOI: 10.1109/MSP.2013.2271648
- 38Scherbaum, F. (2016). On the benefit of larynxmicrophone field recordings for the documentation and analysis of polyphonic vocal music. Proceedings of the International Workshop Folk Music Analysis, pages 80–87.
- 39Scherbaum, F., Müller, M., & Rosenzweig, S. (2017). Analysis of the Tbilisi State Conservatory recordings of Artem Erkomaishvili in 1966. In Proceedings of the International Workshop on Folk Music Analysis, pages 29–36. Málaga, Spain.
- 40Scherbaum, F., Mzhavanadze, N., Rosenzweig, S., & Müller, M. (2019). Multi-media recordings of traditional Georgian vocal music for computational analysis. In Proceedings of the International Workshop on Folk Music Analysis, pages 1–6. Birmingham, UK.
- 41Şentürk, S. (2016). Computational analysis of audio recordings and music scores for the description and discovery of Ottoman-Turkish Makam music. PhD thesis, Universitat Pompeu Fabra.
- 42Serra, X. (2014a). Computational approaches to the art music traditions of India and Turkey. Journal of New Music Research, Special Issue on Computational Approaches to the Art Music Traditions of India and Turkey, 43(1), 1–2. DOI: 10.1080/09298215.2014.894083
- 43Serra, X. (2014b). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio, London, UK.
- 44Shugliashvili, D. (2014). Georgian Church Hymns, Shemokmedi School. Georgian Chanting Foundation.
- 45Six, J., Cornelis, O., & Leman, M. (2013). Tarsos, a modular platform for precise pitch analysis of Western and non-Western music. Journal of New Music Research, 42(2), 113–129. DOI: 10.1080/09298215.2013.797999
- 46Srinivasamurthy, A., Koduri, G. K., Gulati, S., Ishwar, V., & Serra, X. (2014). Corpora for music information research in Indian art music. In Proceedings of the Joint Conference 40th International Computer Music Conference (ICMC) and 11th Sound and Music Computing Conference (SMC), Athens, Greece.
- 47Thomas, V., Fremerey, C., Müller, M., & Clausen, M. (2012).
Linking sheet music and audio – challenges and new approaches . In Müller, M., Goto, M., & Schedl, M., Editors, Multimodal Music Processing, volume 3 of Dagstuhl Follow-Ups, pages 1–22. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany. - 48Tsereteli, Z., & Veshapidze, L. (2014). On the Georgian traditional scale. In Proceedings of the International Symposium on Traditional Polyphony, pages 288–295. Tbilisi, Georgia.
- 49Tzanetakis, G. (2009). Music analysis, retrieval and synthesis of audio signals MARSYAS. In Proceedings of the ACM International Conference on Multimedia (ACM-MM), pages 931–932. Vancouver, British Columbia, Canada. DOI: 10.1145/1631272.1631459
- 50Tzanetakis, G. (2014). Computational ethnomusicology: A music information retrieval perspective. In Proceedings of the Joint Conference 40th International Computer Music Conference (ICMC) and 11th Sound and Music Computing Conference (SMC), pages 69–73. Athens, Greece.
- 51Tzanetakis, G., Kapur, A., Schloss, W. A., & Wright, M. (2007). Computational ethnomusicology. Journal of Interdisciplinary Music Studies, 1(2), 1–24.
- 52Uyar, B., Atli, H. S., Sentürk, S., Bozkurt, B., & Serra, X. (2014). A corpus for computational research of Turkish makam music. In Proceedings of the International Workshop on Digital Libraries for Musicology, pages 1–7. London, UK. DOI: 10.1145/2660168.2660174
- 53van Kranenburg, P., de Bruin, M., & Volk, A. (2019). Documenting a song culture: The Dutch Song Database as a resource for musicological research. International Journal on Digital Libraries, 20(1), 13–23. DOI: 10.1007/s00799-017-0228-4
- 54Werner, N., Balke, S., Stöter, F.-R., Müller, M., & Edler, B. (2017). trackswitch.js: A versatile webbased audio player for presenting scientific results. In Proceedings of the Web Audio Conference (WAC), London, UK.
- 55Zalkow, F., Rosenzweig, S., Graulich, J., Dietz, L., Lemnaouar, E. M., & Müller, M. (2018). A web-based interface for score following and track switching in choral music. In Demos and Late Breaking News of the International Society for Music Information Retrieval Conference (ISMIR), Paris, France.
