Have a personal or library account? Click to login
Unveiling the Hierarchical Structure of Music by Multi-Resolution Community Detection Cover

Unveiling the Hierarchical Structure of Music by Multi-Resolution Community Detection

Open Access
|Jun 2020

References

  1. 1 Arenas, A., Fernandez, A., & Gomez, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10(5): 053039. DOI: 10.1088/1367-2630/10/5/053039
  2. 2 Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music using chromabased representations. IEEE Transactions on Multimedia, 7(1): 96104. DOI: 10.1109/TMM.2004.840597
  3. 3 Bruderer, M. J., McKinney, M. F., & Kohlrausch, A. (2006). Structural boundary perception in popular music. In Proceedings of the 7th International Conference on Music Information Retrieval, pages 198201.
  4. 4 Camilus, K. S., & Govindan, V. (2012). A review on graph based segmentation. International Journal of Image, Graphics & Signal Processing, 4(5). DOI: 10.5815/ijigsp.2012.05.01
  5. 5 Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6): 066111. DOI: 10.1103/PhysRevE.70.066111
  6. 6 Dannenberg, R. B. (2005). Toward automated holistic beat tracking, music analysis and understanding. In Proceedings of the 6th International Conference on Music Information Retrieval, pages 366373.
  7. 7 Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical Review E, 72(2): 027104. DOI: 10.1103/PhysRevE.72.027104
  8. 8 Foote, J. (1999). Visualizing music and audio using self-similarity. In Proceedings of the Seventh ACM International Conference on Multimedia (Part 1), pages 7780. DOI: 10.1145/319463.319472
  9. 9 Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In IEEE International Conference on Multimedia and Expo, volume 1, pages 452455. DOI: 10.1109/ICME.2000.869637
  10. 10 Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1): 3641. DOI: 10.1073/pnas.0605965104
  11. 11 Gómez, E. (2006). Tonal description of music audio signals. PhD thesis, Universitat Pompeu Fabra.
  12. 12 Goto, M. (2006). A chorus section detection method for musical audio signals and its application to a music listening station. IEEE Transactions on Audio, Speech, and Language Processing, 14(5): 17831794. DOI: 10.1109/TSA.2005.863204
  13. 13 Goto, M., & Dannenberg, R. B. (2018). Music interfaces based on automatic music signal analysis: new ways to create and listen to music. IEEE Signal Processing Magazine, 36(1): 7481. DOI: 10.1109/MSP.2018.2874360
  14. 14 Goto, M., Yoshii, K., Fujihara, H., Mauch, M., & Nakano, T. (2011). Songle: A web service for active music listening improved by user contributions. In Proceedings of the 12th International Society for Music Information Retrieval Conference, pages 311316.
  15. 15 Granell, C., Gomez, S., & Arenas, A. (2012). Hierarchical multiresolution method to overcome the resolution limit in complex networks. International Journal of Bifurcation and Chaos, 22(07): 1250171. DOI: 10.1142/S0218127412501714
  16. 16 Grill, T., & Schlüter, J. (2015). Music boundary detection using neural networks on combined features and two-level annotations. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 531537.
  17. 17 Gulati, S., Serra, J., Ishwar, V., & Serra, X. (2016). Discovering rāga motifs by characterizing communities in networks of melodic patterns. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 286290. DOI: 10.1109/ICASSP.2016.7471682
  18. 18 Jensen, K. (2006). Multiple scale music segmentation using rhythm, timbre, and harmony. EURASIP Journal on Advances in Signal Processing, 2007: 073205. DOI: 10.1155/2007/73205
  19. 19 Kaiser, F., & Peeters, G. (2013). A simple fusion method of state and sequence segmentation for music structure discovery. In Proceedings of the 14th International Society for Music Information Retrieval Conference, pages 257262.
  20. 20 Kurth, F., Müller, M., Damm, D., Fremerey, C., Ribbrock, A., & Clausen, M. (2005). Syncplayer - an advanced system for multimodal music access. In Proceedings of the 6th International Conference on Music Information Retrieval, pages 381388.
  21. 21 Lamere, P. (2000). The infinite jukebox. http://infinitejukebox.playlistmachinery.com/. Accessed: 18-05-2020.
  22. 22 Lancichinetti, A., & Fortunato, S. (2011). Limits of modularity maximization in community detection. Physical Review E, 84(6): 066122. DOI: 10.1103/PhysRevE.84.066122
  23. 23 Lerdahl, F., & Jackendoff, R. S. (1985). A Generative Theory of Tonal Music. MIT Press.
  24. 24 Levy, M., & Sandler, M. (2008). Structural segmentation of musical audio by constrained clustering. IEEE Transactions on Audio, Speech and Language Processing, 16(2): 318326. DOI: 10.1109/TASL.2007.910781
  25. 25 Lu, L., Wang, M., & Zhang, H.-J. (2004). Repeating pattern discovery and structure analysis from acoustic music data. In Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pages 275282. DOI: 10.1145/1026711.1026756
  26. 26 McFee, B., & Ellis, D. (2014a). Analyzing song structure with spectral clustering. In Proceedings of the 15th International Society for Music Information Retrieval Conference, pages 405410.
  27. 27 McFee, B., & Ellis, D. P. W. (2014b). Learning to segment songs with ordinal linear discriminant analysis. Self, 275: 330. DOI: 10.1109/ICASSP.2014.6854594
  28. 28 McFee, B., & Kinnaird, K. M. (2019). Improving structure evaluation through automatic hierarchy expansion. In Proceedings of the 20th International Society for Music Information Retrieval Conference.
  29. 29 McFee, B., Nieto, O., Farbood, M. M., & Bello, J. P. (2017). Evaluating hierarchical structure in music annotations. Frontiers in Psychology, 8: 1337. DOI: 10.3389/fpsyg.2017.01337
  30. 30 McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., & Nieto, O. (2015). librosa: Audio and music signal analysis in python. In Proceedings of the 14th Python in Science Conference, pages 1825. DOI: 10.25080/Majora-7b98e3ed-003
  31. 31 Mourchid, Y., El Hassouni, M., & Cherifi, H. (2016). Image segmentation based on community detection approach. International Journal of Computer Information Systems and Industrial Management Applications, pages 21507988.
  32. 32 Müller, M. (2015). Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Springer.
  33. 33 Müller, M., Chew, E., & Bello, J. P. (2016). Computational music structure analysis (Dagstuhl seminar 16092). In Dagstuhl Reports, volume 6. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
  34. 34 Müller, M., & Kurth, F. (2006). Towards structural analysis of audio recordings in the presence of musical variations. EURASIP Journal on Advances in Signal Processing, 2007(1): 089686. DOI: 10.1155/2007/89686
  35. 35 Newman, M. E. (2004a). Analysis of weighted networks. Physical Review E, 70(5): 056131. DOI: 10.1103/PhysRevE.70.056131
  36. 36 Newman, M. E. (2004b). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6): 066133. DOI: 10.1103/PhysRevE.69.066133
  37. 37 Nieto, O., & Bello, J. P. (2014). Music segment similarity using 2d-Fourier magnitude coefficients. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 664668. DOI: 10.1109/ICASSP.2014.6853679
  38. 38 Nieto, O., & Bello, J. P. (2015). MSAF: Music structure analysis framework. In Proceedings of the 16th International Society for Music Information Retrieval Conference.
  39. 39 Paulus, J. (2010). Improving Markov model based music piece structure labelling with acoustic information. In Proceedings of the 11th International Society for Music Information Retrieval Conference, pages 303308.
  40. 40 Paulus, J., & Klapuri, A. (2009). Music structure analysis using a probabilistic fitness measure and a greedy search algorithm. IEEE Transactions on Audio, Speech, and Language Processing, 17(6): 11591170. DOI: 10.1109/TASL.2009.2020533
  41. 41 Paulus, J., Müller, M., & Klapuri, A. (2010). State of the art report: Audio-based music structure analysis. In Proceedings of the 11th International Society for Music Information Retrieval Conference, pages 625636.
  42. 42 Peeters, G. (2003). Deriving musical structures from signal analysis for music audio summary generation: “sequence” and “state” approach. In International Symposium on Computer Music Modeling and Retrieval, pages 143166. Springer. DOI: 10.1007/978-3-540-39900-1_14
  43. 43 Pujol, J. M., Béjar, J., & Delgado, J. (2006). Clustering algorithm for determining community structure in large networks. Physical Review E, 74(1): 016107. DOI: 10.1103/PhysRevE.74.016107
  44. 44 Serrà, J., Zanin, M., Herrera, P., & Serra, X. (2012). Characterization and exploitation of community structure in cover song networks. Pattern Recognition Letters, 33(9): 10321041. DOI: 10.1016/j.patrec.2012.02.013
  45. 45 Smith, J., Kawasaki, Y., & Goto, M. (2019). Unmixer: An interface for extracting and remixing loops. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 824831.
  46. 46 Smith, J. B., & Chew, E. (2013). Using quadratic programming to estimate feature relevance in structural analyses of music. In Proceedings of the 21st ACM International Conference on Multimedia, pages 113122. DOI: 10.1145/2502081.2502124
  47. 47 Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., De Roure, D., & Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. In Proceedings of the 12th International Society for Music Information Retrieval Conference, pages 555560.
  48. 48 Temperley, D. (2004). The Cognition of Basic Musical Structures. MIT Press.
  49. 49 Wattenberg, M. (2000). The shape of song. http://turbulence.org/Works/song/method/method.html. Accessed: 18-05-2020.
DOI: https://doi.org/10.5334/tismir.41 | Journal eISSN: 2514-3298
Language: English
Submitted on: Sep 6, 2019
Accepted on: May 12, 2020
Published on: Jun 24, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Jacopo de Berardinis, Michail Vamvakaris, Angelo Cangelosi, Eduardo Coutinho, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.