References
-
1
Arenas,
A.,
Fernandez,
A., &
Gomez,
S. (2008).
Analysis of the structure of complex networks at different
resolution levels. New Journal of Physics,
10(5):
053039 . DOI: 10.1088/1367-2630/10/5/053039 - 2 Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music using chromabased representations. IEEE Transactions on Multimedia, 7(1): 96–104. DOI: 10.1109/TMM.2004.840597
- 3 Bruderer, M. J., McKinney, M. F., & Kohlrausch, A. (2006). Structural boundary perception in popular music. In Proceedings of the 7th International Conference on Music Information Retrieval, pages 198–201.
- 4 Camilus, K. S., & Govindan, V. (2012). A review on graph based segmentation. International Journal of Image, Graphics & Signal Processing, 4(5). DOI: 10.5815/ijigsp.2012.05.01
-
5
Clauset,
A.,
Newman, M.
E., & Moore,
C. (2004).
Finding community structure in very large
networks. Physical Review E,
70(6):
066111 . DOI: 10.1103/PhysRevE.70.066111 - 6 Dannenberg, R. B. (2005). Toward automated holistic beat tracking, music analysis and understanding. In Proceedings of the 6th International Conference on Music Information Retrieval, pages 366–373.
-
7
Duch,
J., &
Arenas,
A. (2005).
Community detection in complex networks using extremal
optimization. Physical Review E,
72(2):
027104 . DOI: 10.1103/PhysRevE.72.027104 - 8 Foote, J. (1999). Visualizing music and audio using self-similarity. In Proceedings of the Seventh ACM International Conference on Multimedia (Part 1), pages 77–80. DOI: 10.1145/319463.319472
- 9 Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In IEEE International Conference on Multimedia and Expo, volume 1, pages 452–455. DOI: 10.1109/ICME.2000.869637
- 10 Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1): 36–41. DOI: 10.1073/pnas.0605965104
- 11 Gómez, E. (2006). Tonal description of music audio signals. PhD thesis, Universitat Pompeu Fabra.
- 12 Goto, M. (2006). A chorus section detection method for musical audio signals and its application to a music listening station. IEEE Transactions on Audio, Speech, and Language Processing, 14(5): 1783–1794. DOI: 10.1109/TSA.2005.863204
- 13 Goto, M., & Dannenberg, R. B. (2018). Music interfaces based on automatic music signal analysis: new ways to create and listen to music. IEEE Signal Processing Magazine, 36(1): 74–81. DOI: 10.1109/MSP.2018.2874360
- 14 Goto, M., Yoshii, K., Fujihara, H., Mauch, M., & Nakano, T. (2011). Songle: A web service for active music listening improved by user contributions. In Proceedings of the 12th International Society for Music Information Retrieval Conference, pages 311–316.
-
15
Granell,
C.,
Gomez,
S., &
Arenas,
A. (2012).
Hierarchical multiresolution method to overcome the
resolution limit in complex networks. International
Journal of Bifurcation and Chaos,
22(07):
1250171 . DOI: 10.1142/S0218127412501714 - 16 Grill, T., & Schlüter, J. (2015). Music boundary detection using neural networks on combined features and two-level annotations. In Proceedings of the 16th International Society for Music Information Retrieval Conference, pages 531–537.
- 17 Gulati, S., Serra, J., Ishwar, V., & Serra, X. (2016). Discovering rāga motifs by characterizing communities in networks of melodic patterns. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 286–290. DOI: 10.1109/ICASSP.2016.7471682
-
18
Jensen,
K. (2006).
Multiple scale music segmentation using rhythm, timbre, and
harmony. EURASIP Journal on Advances in Signal
Processing, 2007:
073205 . DOI: 10.1155/2007/73205 - 19 Kaiser, F., & Peeters, G. (2013). A simple fusion method of state and sequence segmentation for music structure discovery. In Proceedings of the 14th International Society for Music Information Retrieval Conference, pages 257–262.
- 20 Kurth, F., Müller, M., Damm, D., Fremerey, C., Ribbrock, A., & Clausen, M. (2005). Syncplayer - an advanced system for multimodal music access. In Proceedings of the 6th International Conference on Music Information Retrieval, pages 381–388.
-
21
Lamere,
P. (2000).
The infinite jukebox.
http://infinitejukebox.playlistmachinery.com/ . Accessed: 18-05-2020. -
22
Lancichinetti,
A., &
Fortunato,
S. (2011).
Limits of modularity maximization in community
detection. Physical Review E,
84(6):
066122 . DOI: 10.1103/PhysRevE.84.066122 - 23 Lerdahl, F., & Jackendoff, R. S. (1985). A Generative Theory of Tonal Music. MIT Press.
- 24 Levy, M., & Sandler, M. (2008). Structural segmentation of musical audio by constrained clustering. IEEE Transactions on Audio, Speech and Language Processing, 16(2): 318–326. DOI: 10.1109/TASL.2007.910781
- 25 Lu, L., Wang, M., & Zhang, H.-J. (2004). Repeating pattern discovery and structure analysis from acoustic music data. In Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, pages 275–282. DOI: 10.1145/1026711.1026756
- 26 McFee, B., & Ellis, D. (2014a). Analyzing song structure with spectral clustering. In Proceedings of the 15th International Society for Music Information Retrieval Conference, pages 405–410.
- 27 McFee, B., & Ellis, D. P. W. (2014b). Learning to segment songs with ordinal linear discriminant analysis. Self, 275: 330. DOI: 10.1109/ICASSP.2014.6854594
- 28 McFee, B., & Kinnaird, K. M. (2019). Improving structure evaluation through automatic hierarchy expansion. In Proceedings of the 20th International Society for Music Information Retrieval Conference.
- 29 McFee, B., Nieto, O., Farbood, M. M., & Bello, J. P. (2017). Evaluating hierarchical structure in music annotations. Frontiers in Psychology, 8: 1337. DOI: 10.3389/fpsyg.2017.01337
- 30 McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., & Nieto, O. (2015). librosa: Audio and music signal analysis in python. In Proceedings of the 14th Python in Science Conference, pages 18–25. DOI: 10.25080/Majora-7b98e3ed-003
- 31 Mourchid, Y., El Hassouni, M., & Cherifi, H. (2016). Image segmentation based on community detection approach. International Journal of Computer Information Systems and Industrial Management Applications, pages 2150–7988.
- 32 Müller, M. (2015). Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Springer.
-
33
Müller,
M.,
Chew,
E., &
Bello, J.
P. (2016).
Computational music structure analysis (Dagstuhl seminar 16092) . In Dagstuhl Reports, volume 6. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. -
34
Müller,
M., &
Kurth,
F. (2006).
Towards structural analysis of audio recordings in the
presence of musical variations. EURASIP Journal on
Advances in Signal Processing,
2007(1):
089686 . DOI: 10.1155/2007/89686 -
35
Newman,
M. E. (2004a).
Analysis of weighted networks.
Physical Review E, 70(5):
056131 . DOI: 10.1103/PhysRevE.70.056131 -
36
Newman,
M. E. (2004b).
Fast algorithm for detecting community structure in
networks. Physical Review E,
69(6):
066133 . DOI: 10.1103/PhysRevE.69.066133 - 37 Nieto, O., & Bello, J. P. (2014). Music segment similarity using 2d-Fourier magnitude coefficients. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 664–668. DOI: 10.1109/ICASSP.2014.6853679
- 38 Nieto, O., & Bello, J. P. (2015). MSAF: Music structure analysis framework. In Proceedings of the 16th International Society for Music Information Retrieval Conference.
- 39 Paulus, J. (2010). Improving Markov model based music piece structure labelling with acoustic information. In Proceedings of the 11th International Society for Music Information Retrieval Conference, pages 303–308.
- 40 Paulus, J., & Klapuri, A. (2009). Music structure analysis using a probabilistic fitness measure and a greedy search algorithm. IEEE Transactions on Audio, Speech, and Language Processing, 17(6): 1159–1170. DOI: 10.1109/TASL.2009.2020533
- 41 Paulus, J., Müller, M., & Klapuri, A. (2010). State of the art report: Audio-based music structure analysis. In Proceedings of the 11th International Society for Music Information Retrieval Conference, pages 625–636.
-
42
Peeters,
G. (2003).
Deriving musical structures from signal analysis for music
audio summary generation: “sequence” and “state”
approach. In International Symposium on Computer
Music Modeling and Retrieval, pages
143–166.
Springer . DOI: 10.1007/978-3-540-39900-1_14 -
43
Pujol,
J. M.,
Béjar,
J., &
Delgado,
J. (2006).
Clustering algorithm for determining community structure in
large networks. Physical Review E,
74(1):
016107 . DOI: 10.1103/PhysRevE.74.016107 - 44 Serrà, J., Zanin, M., Herrera, P., & Serra, X. (2012). Characterization and exploitation of community structure in cover song networks. Pattern Recognition Letters, 33(9): 1032–1041. DOI: 10.1016/j.patrec.2012.02.013
- 45 Smith, J., Kawasaki, Y., & Goto, M. (2019). Unmixer: An interface for extracting and remixing loops. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 824–831.
- 46 Smith, J. B., & Chew, E. (2013). Using quadratic programming to estimate feature relevance in structural analyses of music. In Proceedings of the 21st ACM International Conference on Multimedia, pages 113–122. DOI: 10.1145/2502081.2502124
- 47 Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., De Roure, D., & Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. In Proceedings of the 12th International Society for Music Information Retrieval Conference, pages 555–560.
- 48 Temperley, D. (2004). The Cognition of Basic Musical Structures. MIT Press.
-
49
Wattenberg,
M. (2000).
The shape of song.
http://turbulence.org/Works/song/method/method.html . Accessed: 18-05-2020.
