References
- 1Abdollahpouri, H., Mansoury, M., Burke, R., & Mobasher, B. (2019). The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286.
- 2Aizenberg, N., Koren, Y., & Somekh, O. (2012). Build your own music recommender by modeling internet radio streams. In Proceedings of the International World Wide Web Conference, pages 1–10.
ACM . DOI: 10.1145/2187836.2187838 - 3Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4). DOI: 10.1037/0033-295X.111.4.1036
- 4Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396–408. DOI: 10.1111/j.1467-9280.1991.tb00174.x
- 5Arnett, J. (1992). The soundtrack of recklessness: Musical preferences and reckless behavior among adolescents. Journal of Adolescent Research, 7(3), 313–331. DOI: 10.1177/074355489273003
- 6Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern Information Retrieval. ACM Press. DOI: 10.1145/2009916.2010172
- 7Bauer, C., & Schedl, M. (2019). Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems. PLoS ONE, 14(6), 1–36. DOI: 10.1371/journal.pone.0217389
- 8Cantor, J. R., & Zillmann, D. (1973). The effect of affective state and emotional arousal on music appreciation. The Journal of General Psychology, 89(1), 97–108. DOI: 10.1080/00221309.1973.9710822
- 9Cattell, R. B., & Anderson, J. C. (1953). The measurement of personality and behavior disorders by the IPAT music preference test. Journal of Applied Psychology, 37(6), 446. DOI: 10.1037/h0056224
- 10Celma, O. (2010). Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer. DOI: 10.1007/978-3-642-13287-2
- 11Celma, Ò., & Cano, P. (2008). From hits to niches?: Or how popular artists can bias music recommendation and discovery. In Proceedings of the 2nd Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition.
ACM . DOI: 10.1145/1722149.1722154 - 12Cremonesi, P., Turrin, R., Lentini, E., & Matteucci, M. (2008). An evaluation methodology for collaborative recommender systems. In Proceedings of International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution, pages 224–231.
IEEE Computer Society . DOI: 10.1109/AXMEDIS.2008.13 - 13Delsing, M. J., Ter Bogt, T. F., Engels, R. C., & Meeus, W. H. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality: Published for the European Association of Personality Psychology, 22(2), 109–130. DOI: 10.1002/per.665
- 14Dollinger, S. J. (1993). Research note: Personality and music preference: Extraversion and excitement seeking or openness to experience? Psychology of Music, 21(1), 73–77. DOI: 10.1177/030573569302100105
- 15Dunn, P. G., de Ruyter, B., & Bouwhuis, D. G. (2012). Toward a better understanding of the relation between music preference, listening behavior, and personality. Psychology of Music, 40(4), 411–428. DOI: 10.1177/0305735610388897
- 16Ferwerda, B., Yang, E., Schedl, M., & Tkalcic, M. (2015). Personality traits predict music taxonomy preferences. In Proceedings of ACM CHI Conference on Human Factors in Computing Systems, pages 2241–2246.
ACM . DOI: 10.1145/2702613.2732754 - 17Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: A cognitive model of user navigation on the World Wide Web. Human-Computer Interaction, 22(4), 355–412. DOI: 10.21236/ADA462156
- 18George, D., Stickle, K., Rachid, F., & Wopnford, A. (2007). The association between types of music enjoyed and cognitive, behavioral, and personality factors of those who listen. Psychomusicology: A Journal of Research in Music Cognition, 19(2). DOI: 10.1037/h0094035
- 19Greenberg, D. M., Baron-Cohen, S., Stillwell, D. J., Kosinski, M., & Rentfrow, P. J. (2015). Musical preferences are linked to cognitive styles. PLoS ONE, 10(7), 1–22. DOI: 10.1371/journal.pone.0131151
- 20Hargreaves, D. J., North, A. C., & Tarrant, M. (2015). How and why do musical preferences change in childhood and adolescence. The Child as Musician: A Handbook of Musical Development, pages 303–322. DOI: 10.1093/acprof:oso/9780198744443.003.0016
- 21Järvelin, K., Price, S. L., Delcambre, L. M., & Nielsen, M. L. (2008). Discounted cumulated gain based evaluation of multiple-query IR sessions. In Proceedings of the European Conference on Information Retrieval, pages 4–15.
Springer . DOI: 10.1007/978-3-540-78646-7_4 - 22Juslin, P. N., & Sloboda, J. A. (2001). Music and Emotion: Theory and Research. Oxford University Press.
- 23Kim, N., Chae, W.-Y., & Lee, Y.-J. (2018). Music recommendation with temporal dynamics in multiple types of user feedback. In Proceedings of the 7th International Conference on Emerging Databases, pages 319–328.
Springer . DOI: 10.1007/978-981-10-6520-0_35 - 24Koenigstein, N., Dror, G., & Koren, Y. (2011). Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy. In Proceedings of ACM Conference on Recommender Systems, pages 165–172.
ACM . DOI: 10.1145/2043932.2043964 - 25Kowald, D., Kopeinik, S., & Lex, E. (2017a). The TagRec framework as a toolkit for the development of tag-based recommender systems. In Adjunct Publication of the ACM Conference on User Modeling, Adapation and Personalization, pages 23–28.
ACM . DOI: 10.1145/3099023.3099069 - 26Kowald, D., & Lex, E. (2016). The influence of frequency, recency and semantic context on the reuse of tags in social tagging systems. In Proceedings of ACM Conference on Hypertext and Social Media, pages 237–242.
ACM . DOI: 10.1145/2914586.2914617 - 27Kowald, D., Pujari, S. C., & Lex, E. (2017b). Temporal effects on hashtag reuse in twitter: A cognitiveinspired hashtag recommendation approach. In Proceedings of the International World Wide Web Conference, pages 1401–1410.
ACM . DOI: 10.1145/3038912.3052605 - 28Krause, A. E., & North, A. C. (2018). ‘Tis the season: Music-playlist preferences for the seasons. Psychology of Aesthetics, Creativity, and the Arts, 12(1). DOI: 10.1037/aca0000104
- 29Leadbeater, R. (2014). Magpies and mirrors: identity as a mediator of music preferences across the lifespan. PhD thesis, Lancaster University.
- 30Lin, Q., Niu, Y., Zhu, Y., Lu, H., Mushonga, K. Z., & Niu, Z. (2018). Heterogeneous knowledge-based attentive neural networks for short-term music recommendations. IEEE Access, 6. DOI: 10.1109/ACCESS.2018.2874959
- 31Maanen, L. V., & Marewski, J. N. (2009). Recommender systems for literature selection: A competition between decision making and memory models. In Proceedings of the Annual Meeting of the Cognitive Science Society.
- 32Mnih, A., & Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances in Neural Information Processing Systems, pages 1257–1264.
- 33Moore, J. L., Chen, S., Turnbull, D., & Joachims, T. (2013). Taste over time: The temporal dynamics of user preferences. In Proceedings of the International Society for Music Information Retrieval Conference, pages 401–406.
- 34Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., & Konstan, J. A. (2014). Exploring the filter bubble: The effect of using recommender systems on content diversity. In Proceedings of the International World Wide Web Conference, pages 677–686.
ACM . DOI: 10.1145/2566486.2568012 - 35North, A., & Hargreaves, D. (2008). The Social and Applied Psychology of Music. OUP Oxford. DOI: 10.1093/acprof:oso/9780198567424.001.0001
- 36North, A. C., & Hargreaves, D. J. (1999). Music and adolescent identity. Music Education Research, 1(1), 75–92. DOI: 10.1080/1461380990010107
- 37Park, C. H., & Kahng, M. (2010). Temporal dynamics in music listening behavior: A case study of online music service. In Proceedings of the IEEE/ACIS International Conference on Computer and Information Science, pages 573–578.
IEEE . DOI: 10.1109/ICIS.2010.142 - 38Pereira, C. S., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S. L., & Brattico, E. (2011). Music and emotions in the brain: Familiarity matters. PLoS ONE, 6(11). DOI: 10.1371/journal.pone.0027241
- 39Peretz, I., Gaudreau, D., & Bonnel, A.-M. (1998). Exposure effects on music preference and recognition. Memory & Cognition, 26(5), 884–902. DOI: 10.3758/BF03201171
- 40Pirolli, P., & Fu, W.-T. (2003). SNIF-ACT: A model of information foraging on the World Wide Web. In International Conference on User Modeling, pages 45–54.
Springer . DOI: 10.1007/3-540-44963-9_8 - 41Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6). DOI: 10.1037/0022-3514.84.6.1236
- 42Rodà, A., Canazza, S., & Poli, G. D. (2014). Clustering affective qualities of classical music: Beyond the valence-arousal plane. IEEE Transactions on Affective Computing, 5(4), 364–376. DOI: 10.1109/TAFFC.2014.2343222
- 43Sachdeva, N., Gupta, K., & Pudi, V. (2018). Attentive neural architecture incorporating song features for music recommendation. In Proceedings of the ACM Conference on Recommender Systems, pages 417–421.
ACM . DOI: 10.1145/3240323.3240397 - 44Schäfer, T., & Sedlmeier, P. (2010). What makes us like music? Determinants of music preference. Psychology of Aesthetics, Creativity, and the Arts, 4(4). DOI: 10.1037/a0018374
- 45Schedl, M. (2016). The lfm-1b dataset for music retrieval and recommendation. In Proceedings of the Conference on Multimedia Retrieval, pages 103–110.
ACM . DOI: 10.1145/2911996.2912004 - 46Schedl, M., & Bauer, C. (2018). An analysis of global and regional mainstreaminess for personalized music recommender systems. Journal of Mobile Multimedia, 14, 95–112.
- 47Schedl, M., & Ferwerda, B. (2017). Large-scale analysis of group-specific music genre taste from collaborative tags. In Proceedings of the IEEE International Symposium on Multimedia, pages 479–482.
IEEE . DOI: 10.1109/ISM.2017.95 - 48Schedl, M., Gómez, E., Trent, E., Tkalčič, M., Eghbal-Zadeh, H., & Martorell, A. (2018a). On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE Transactions on Affective Computing, 9, 507–525. DOI: 10.1109/TAFFC.2017.2663421
- 49Schedl, M., & Hauger, D. (2015). Tailoring music recommendations to users by considering diversity, mainstreaminess, and novelty. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, pages 947–950.
ACM . DOI: 10.1145/2766462.2767763 - 50Schedl, M., Knees, P., McFee, B., Bogdanov, D., & Kaminskas, M. (2015).
Music recommender systems . In Recommender Systems Handbook, pages 453–492. Springer. DOI: 10.1007/978-1-4899-7637-6_13 - 51Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., & Elahi, M. (2018b). Current challenges and visions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7(2), 95–116. DOI: 10.1007/s13735-018-0154-2
- 52Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for coldstart recommendations. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 253–260.
ACM . DOI: 10.1145/564376.564421 - 53Schubert, E. (2007). The influence of emotion, locus of emotion and familiarity upon preference in music. Psychology of Music, 35(3), 499–515. DOI: 10.1177/0305735607072657
- 54Seitlinger, P., Kowald, D., Kopeinik, S., Hasani-Mavriqi, I., Lex, E., & Ley, T. (2015). Attention please! A hybrid resource recommender mimicking attention-interpretation dynamics. In Companion Proceedings of International World Wide Web Conference, pages 339–345.
ACM . DOI: 10.1145/2740908.2743057 - 55Selvi, C., & Sivasankar, E. (2019).
An efficient context-aware music recommendation based on emotion and time context . In Mishra, D. K., Yang, X.-S., & Unal, A., Editors, Data Science and Big Data Analytics, pages 215–228. Springer. DOI: 10.1007/978-981-10-7641-1_18 - 56Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM Computing Surveys, 47(1), 3:1–3:45. DOI: 10.1145/2556270
- 57Vall, A., Quadrana, M., Schedl, M., & Widmer, G. (2019). Order, context and popularity bias in next-song recommendations. International Journal of Multimedia Information Retrieval, 8(2), 101–113. DOI: 10.1007/s13735-019-00169-8
- 58van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. In Proceedings of Neural Information Processing Systems Conference, pages 2643–2651.
Curran Associates Inc . - 59Volkovs, M., Rai, H., Cheng, Z., Wu, G., Lu, Y., & Sanner, S. (2018). Two-stage model for automatic playlist continuation at scale. In Proceedings of ACM Conference on Recommender Systems, page 9.
ACM . DOI: 10.1145/3267471.3267480 - 60Zheng, E., Kondo, G. Y., Zilora, S., & Yu, Q. (2018). Tag-aware dynamic music recommendation. Expert Systems with Applications, 106, 244–251. DOI: 10.1016/j.eswa.2018.04.014
