Have a personal or library account? Click to login
Modeling Popularity and Temporal Drift of Music Genre Preferences Cover

Modeling Popularity and Temporal Drift of Music Genre Preferences

Open Access
|Mar 2020

References

  1. 1Abdollahpouri, H., Mansoury, M., Burke, R., & Mobasher, B. (2019). The unfairness of popularity bias in recommendation. arXiv preprint arXiv:1907.13286.
  2. 2Aizenberg, N., Koren, Y., & Somekh, O. (2012). Build your own music recommender by modeling internet radio streams. In Proceedings of the International World Wide Web Conference, pages 110. ACM. DOI: 10.1145/2187836.2187838
  3. 3Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111(4). DOI: 10.1037/0033-295X.111.4.1036
  4. 4Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396408. DOI: 10.1111/j.1467-9280.1991.tb00174.x
  5. 5Arnett, J. (1992). The soundtrack of recklessness: Musical preferences and reckless behavior among adolescents. Journal of Adolescent Research, 7(3), 313331. DOI: 10.1177/074355489273003
  6. 6Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern Information Retrieval. ACM Press. DOI: 10.1145/2009916.2010172
  7. 7Bauer, C., & Schedl, M. (2019). Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems. PLoS ONE, 14(6), 136. DOI: 10.1371/journal.pone.0217389
  8. 8Cantor, J. R., & Zillmann, D. (1973). The effect of affective state and emotional arousal on music appreciation. The Journal of General Psychology, 89(1), 97108. DOI: 10.1080/00221309.1973.9710822
  9. 9Cattell, R. B., & Anderson, J. C. (1953). The measurement of personality and behavior disorders by the IPAT music preference test. Journal of Applied Psychology, 37(6), 446. DOI: 10.1037/h0056224
  10. 10Celma, O. (2010). Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer. DOI: 10.1007/978-3-642-13287-2
  11. 11Celma, Ò., & Cano, P. (2008). From hits to niches?: Or how popular artists can bias music recommendation and discovery. In Proceedings of the 2nd Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition. ACM. DOI: 10.1145/1722149.1722154
  12. 12Cremonesi, P., Turrin, R., Lentini, E., & Matteucci, M. (2008). An evaluation methodology for collaborative recommender systems. In Proceedings of International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution, pages 224231. IEEE Computer Society. DOI: 10.1109/AXMEDIS.2008.13
  13. 13Delsing, M. J., Ter Bogt, T. F., Engels, R. C., & Meeus, W. H. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality: Published for the European Association of Personality Psychology, 22(2), 109130. DOI: 10.1002/per.665
  14. 14Dollinger, S. J. (1993). Research note: Personality and music preference: Extraversion and excitement seeking or openness to experience? Psychology of Music, 21(1), 7377. DOI: 10.1177/030573569302100105
  15. 15Dunn, P. G., de Ruyter, B., & Bouwhuis, D. G. (2012). Toward a better understanding of the relation between music preference, listening behavior, and personality. Psychology of Music, 40(4), 411428. DOI: 10.1177/0305735610388897
  16. 16Ferwerda, B., Yang, E., Schedl, M., & Tkalcic, M. (2015). Personality traits predict music taxonomy preferences. In Proceedings of ACM CHI Conference on Human Factors in Computing Systems, pages 22412246. ACM. DOI: 10.1145/2702613.2732754
  17. 17Fu, W.-T., & Pirolli, P. (2007). SNIF-ACT: A cognitive model of user navigation on the World Wide Web. Human-Computer Interaction, 22(4), 355412. DOI: 10.21236/ADA462156
  18. 18George, D., Stickle, K., Rachid, F., & Wopnford, A. (2007). The association between types of music enjoyed and cognitive, behavioral, and personality factors of those who listen. Psychomusicology: A Journal of Research in Music Cognition, 19(2). DOI: 10.1037/h0094035
  19. 19Greenberg, D. M., Baron-Cohen, S., Stillwell, D. J., Kosinski, M., & Rentfrow, P. J. (2015). Musical preferences are linked to cognitive styles. PLoS ONE, 10(7), 122. DOI: 10.1371/journal.pone.0131151
  20. 20Hargreaves, D. J., North, A. C., & Tarrant, M. (2015). How and why do musical preferences change in childhood and adolescence. The Child as Musician: A Handbook of Musical Development, pages 303322. DOI: 10.1093/acprof:oso/9780198744443.003.0016
  21. 21Järvelin, K., Price, S. L., Delcambre, L. M., & Nielsen, M. L. (2008). Discounted cumulated gain based evaluation of multiple-query IR sessions. In Proceedings of the European Conference on Information Retrieval, pages 415. Springer. DOI: 10.1007/978-3-540-78646-7_4
  22. 22Juslin, P. N., & Sloboda, J. A. (2001). Music and Emotion: Theory and Research. Oxford University Press.
  23. 23Kim, N., Chae, W.-Y., & Lee, Y.-J. (2018). Music recommendation with temporal dynamics in multiple types of user feedback. In Proceedings of the 7th International Conference on Emerging Databases, pages 319328. Springer. DOI: 10.1007/978-981-10-6520-0_35
  24. 24Koenigstein, N., Dror, G., & Koren, Y. (2011). Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy. In Proceedings of ACM Conference on Recommender Systems, pages 165172. ACM. DOI: 10.1145/2043932.2043964
  25. 25Kowald, D., Kopeinik, S., & Lex, E. (2017a). The TagRec framework as a toolkit for the development of tag-based recommender systems. In Adjunct Publication of the ACM Conference on User Modeling, Adapation and Personalization, pages 2328. ACM. DOI: 10.1145/3099023.3099069
  26. 26Kowald, D., & Lex, E. (2016). The influence of frequency, recency and semantic context on the reuse of tags in social tagging systems. In Proceedings of ACM Conference on Hypertext and Social Media, pages 237242. ACM. DOI: 10.1145/2914586.2914617
  27. 27Kowald, D., Pujari, S. C., & Lex, E. (2017b). Temporal effects on hashtag reuse in twitter: A cognitiveinspired hashtag recommendation approach. In Proceedings of the International World Wide Web Conference, pages 14011410. ACM. DOI: 10.1145/3038912.3052605
  28. 28Krause, A. E., & North, A. C. (2018). ‘Tis the season: Music-playlist preferences for the seasons. Psychology of Aesthetics, Creativity, and the Arts, 12(1). DOI: 10.1037/aca0000104
  29. 29Leadbeater, R. (2014). Magpies and mirrors: identity as a mediator of music preferences across the lifespan. PhD thesis, Lancaster University.
  30. 30Lin, Q., Niu, Y., Zhu, Y., Lu, H., Mushonga, K. Z., & Niu, Z. (2018). Heterogeneous knowledge-based attentive neural networks for short-term music recommendations. IEEE Access, 6. DOI: 10.1109/ACCESS.2018.2874959
  31. 31Maanen, L. V., & Marewski, J. N. (2009). Recommender systems for literature selection: A competition between decision making and memory models. In Proceedings of the Annual Meeting of the Cognitive Science Society.
  32. 32Mnih, A., & Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances in Neural Information Processing Systems, pages 12571264.
  33. 33Moore, J. L., Chen, S., Turnbull, D., & Joachims, T. (2013). Taste over time: The temporal dynamics of user preferences. In Proceedings of the International Society for Music Information Retrieval Conference, pages 401406.
  34. 34Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L., & Konstan, J. A. (2014). Exploring the filter bubble: The effect of using recommender systems on content diversity. In Proceedings of the International World Wide Web Conference, pages 677686. ACM. DOI: 10.1145/2566486.2568012
  35. 35North, A., & Hargreaves, D. (2008). The Social and Applied Psychology of Music. OUP Oxford. DOI: 10.1093/acprof:oso/9780198567424.001.0001
  36. 36North, A. C., & Hargreaves, D. J. (1999). Music and adolescent identity. Music Education Research, 1(1), 7592. DOI: 10.1080/1461380990010107
  37. 37Park, C. H., & Kahng, M. (2010). Temporal dynamics in music listening behavior: A case study of online music service. In Proceedings of the IEEE/ACIS International Conference on Computer and Information Science, pages 573578. IEEE. DOI: 10.1109/ICIS.2010.142
  38. 38Pereira, C. S., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S. L., & Brattico, E. (2011). Music and emotions in the brain: Familiarity matters. PLoS ONE, 6(11). DOI: 10.1371/journal.pone.0027241
  39. 39Peretz, I., Gaudreau, D., & Bonnel, A.-M. (1998). Exposure effects on music preference and recognition. Memory & Cognition, 26(5), 884902. DOI: 10.3758/BF03201171
  40. 40Pirolli, P., & Fu, W.-T. (2003). SNIF-ACT: A model of information foraging on the World Wide Web. In International Conference on User Modeling, pages 4554. Springer. DOI: 10.1007/3-540-44963-9_8
  41. 41Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6). DOI: 10.1037/0022-3514.84.6.1236
  42. 42Rodà, A., Canazza, S., & Poli, G. D. (2014). Clustering affective qualities of classical music: Beyond the valence-arousal plane. IEEE Transactions on Affective Computing, 5(4), 364376. DOI: 10.1109/TAFFC.2014.2343222
  43. 43Sachdeva, N., Gupta, K., & Pudi, V. (2018). Attentive neural architecture incorporating song features for music recommendation. In Proceedings of the ACM Conference on Recommender Systems, pages 417421. ACM. DOI: 10.1145/3240323.3240397
  44. 44Schäfer, T., & Sedlmeier, P. (2010). What makes us like music? Determinants of music preference. Psychology of Aesthetics, Creativity, and the Arts, 4(4). DOI: 10.1037/a0018374
  45. 45Schedl, M. (2016). The lfm-1b dataset for music retrieval and recommendation. In Proceedings of the Conference on Multimedia Retrieval, pages 103110. ACM. DOI: 10.1145/2911996.2912004
  46. 46Schedl, M., & Bauer, C. (2018). An analysis of global and regional mainstreaminess for personalized music recommender systems. Journal of Mobile Multimedia, 14, 95112.
  47. 47Schedl, M., & Ferwerda, B. (2017). Large-scale analysis of group-specific music genre taste from collaborative tags. In Proceedings of the IEEE International Symposium on Multimedia, pages 479482. IEEE. DOI: 10.1109/ISM.2017.95
  48. 48Schedl, M., Gómez, E., Trent, E., Tkalčič, M., Eghbal-Zadeh, H., & Martorell, A. (2018a). On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE Transactions on Affective Computing, 9, 507525. DOI: 10.1109/TAFFC.2017.2663421
  49. 49Schedl, M., & Hauger, D. (2015). Tailoring music recommendations to users by considering diversity, mainstreaminess, and novelty. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, pages 947950. ACM. DOI: 10.1145/2766462.2767763
  50. 50Schedl, M., Knees, P., McFee, B., Bogdanov, D., & Kaminskas, M. (2015). Music recommender systems. In Recommender Systems Handbook, pages 453492. Springer. DOI: 10.1007/978-1-4899-7637-6_13
  51. 51Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., & Elahi, M. (2018b). Current challenges and visions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7(2), 95116. DOI: 10.1007/s13735-018-0154-2
  52. 52Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for coldstart recommendations. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 253260. ACM. DOI: 10.1145/564376.564421
  53. 53Schubert, E. (2007). The influence of emotion, locus of emotion and familiarity upon preference in music. Psychology of Music, 35(3), 499515. DOI: 10.1177/0305735607072657
  54. 54Seitlinger, P., Kowald, D., Kopeinik, S., Hasani-Mavriqi, I., Lex, E., & Ley, T. (2015). Attention please! A hybrid resource recommender mimicking attention-interpretation dynamics. In Companion Proceedings of International World Wide Web Conference, pages 339345. ACM. DOI: 10.1145/2740908.2743057
  55. 55Selvi, C., & Sivasankar, E. (2019). An efficient context-aware music recommendation based on emotion and time context. In Mishra, D. K., Yang, X.-S., & Unal, A., Editors, Data Science and Big Data Analytics, pages 215228. Springer. DOI: 10.1007/978-981-10-7641-1_18
  56. 56Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM Computing Surveys, 47(1), 3:13:45. DOI: 10.1145/2556270
  57. 57Vall, A., Quadrana, M., Schedl, M., & Widmer, G. (2019). Order, context and popularity bias in next-song recommendations. International Journal of Multimedia Information Retrieval, 8(2), 101113. DOI: 10.1007/s13735-019-00169-8
  58. 58van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. In Proceedings of Neural Information Processing Systems Conference, pages 26432651. Curran Associates Inc.
  59. 59Volkovs, M., Rai, H., Cheng, Z., Wu, G., Lu, Y., & Sanner, S. (2018). Two-stage model for automatic playlist continuation at scale. In Proceedings of ACM Conference on Recommender Systems, page 9. ACM. DOI: 10.1145/3267471.3267480
  60. 60Zheng, E., Kondo, G. Y., Zilora, S., & Yu, Q. (2018). Tag-aware dynamic music recommendation. Expert Systems with Applications, 106, 244251. DOI: 10.1016/j.eswa.2018.04.014
DOI: https://doi.org/10.5334/tismir.39 | Journal eISSN: 2514-3298
Language: English
Submitted on: Jun 19, 2019
Accepted on: Nov 15, 2019
Published on: Mar 25, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Elisabeth Lex, Dominik Kowald, Markus Schedl, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.