Have a personal or library account? Click to login
Score Following as a Multi-Modal Reinforcement Learning Problem Cover

Score Following as a Multi-Modal Reinforcement Learning Problem

Open Access
|Nov 2019

References

  1. 1Arzt, A. (2016). Flexible and Robust Music Tracking. PhD thesis, Johannes Kepler University Linz.
  2. 2Arzt, A., Frostel, H., Gadermaier, T., Gasser, M., Grachten, M., & Widmer, G. (2015). Artificial Intelligence in the Concertgebouw. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (pp. 24242430). Buenos Aires, Argentina.
  3. 3Arzt, A., Widmer, G., & Dixon, S. (2008). Automatic Page Turning for Musicians via Real-Time Machine Listening. In Proceedings of the European Conference on Artificial Intelligence (ECAI) (pp. 241245). Patras, Greece.
  4. 4Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & Müller, K.-R. (2010). How to Explain Individual Classification Decisions. Journal of Machine Learning Research, 11, 18031831.
  5. 5Balke, S., Achankunju, S. P., & Müller, M. (2015). Matching Musical Themes Based on Noisy OCR and OMR Input. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 703707). Brisbane, Australia. DOI: 10.1109/ICASSP.2015.7178060
  6. 6Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  7. 7Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2012). Modeling Temporal Dependencies in High-dimensional Sequences: Application to Polyphonic Music Generation and Transcription. In Proceedings of the 29th International Conference on Machine Learning (ICML). Edinburgh, UK. DOI: 10.1109/ICASSP.2013.6638244
  8. 8Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540.
  9. 9Byrd, D., & Simonsen, J. G. (2015). Towards a Standard Testbed for Optical Music Recognition: Definitions, Metrics, and Page Images. Journal of New Music Research, 44(3), 169195. DOI: 10.1080/09298215.2015.1045424
  10. 10Clevert, D., Unterthiner, T., & Hochreiter, S. (2016). Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). In Proceedings of the International Conference on Learning Representations (ICLR) (arXiv:1511.07289).
  11. 11Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. (2018). Quantifying Generalization in Reinforcement Learning. arXiv preprint arXiv:1812.02341.
  12. 12Cont, A. (2006). Realtime Audio to Score Alignment for Polyphonic Music Instruments using Sparse Non-Negative Constraints and Hierarchical HMMs. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (vol. 5, pp. 245248). Toulouse, France. DOI: 10.1109/ICASSP.2006.1661258
  13. 13Cont, A. (2010). A Coupled Duration-Focused Architecture for Real-Time Music-to-Score Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), 974987. DOI: 10.1109/TPAMI.2009.106
  14. 14Dixon, S. (2005). An On-Line Time Warping Algorithm for Tracking Musical Performances. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (pp. 17271728). Edinburgh, UK.
  15. 15Dixon, S., & Widmer, G. (2005). MATCH: A music alignment tool chest. In Proceedings of the International Conference on Music Information Retrieval (ISMIR) (pp. 492497). London, UK.
  16. 16Dorfer, M., Arzt, A., & Widmer, G. (2016). Towards Score Following in Sheet Music Images. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 789795). New York, USA.
  17. 17Dorfer, M., Hajič, J., Jr., Arzt, A., Frostel, H., & Widmer, G. (2018a). Learning Audio–Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification. Transactions of the International Society for Music Information Retrieval, 1(1), 2233. DOI: 10.5334/timsir.12
  18. 18Dorfer, M., Henkel, F., & Widmer, G. (2018b). Learning to Listen, Read, and Follow: Score Following as a Reinforcement Learning Game. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 784791). Paris, France.
  19. 19Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking Deep Reinforcement Learning for Continuous Control. In Proceedings of the 33nd International Conference on Machine Learning (ICML) (pp. 13291338). New York City, United States.
  20. 20Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning. Journal of Machine Learning Research, 5, 14711530.
  21. 21Hajič, J., Jr. and Pecina, P. (2017). The MUSCIMA++ Dataset for Handwritten Optical Music Recognition. In 14th International Conference on Document Analysis and Recognition (ICDAR) (pp. 3946). New York, United States. DOI: 10.1109/ICDAR.2017.16
  22. 22Kingma, D., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (ICLR) (arXiv:1412.6980).
  23. 23Krause, J., Perer, A., & Ng, K. (2016). Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 56865697). ACM. DOI: 10.1145/2858036.2858529
  24. 24Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous Control with Deep Reinforcement Learning. arXiv preprint arXiv:1509.02971.
  25. 25Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning (ICML) (pp. 19281937). New York City, United States.
  26. 26Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level Control Through Deep Reinforcement Learning. Nature, 518, 529533. DOI: 10.1038/nature14236
  27. 27Müller, M. (2015). Fundamentals of Music Processing. Springer Verlag. DOI: 10.1007/978-3-319-21945-5
  28. 28Nakamura, E., Cuvillier, P., Cont, A., Ono, N., & Sagayama, S. (2015). Autoregressive Hidden Semi-Markov Model of Symbolic Music for Score Following. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 392398). Málaga, Spain.
  29. 29Orio, N., Lemouton, S., & Schwarz, D. (2003). Score Following: State of the Art and New Developments. In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME) (pp. 3641). Montreal, Canada.
  30. 30Prockup, M., Grunberg, D., Hrybyk, A., & Kim, Y. E. (2013). Orchestral Performance Companion: Using Real-Time Audio to Score Alignment. IEEE Multimedia, 20(2), 5260. DOI: 10.1109/MMUL.2013.26
  31. 31Raphael, C. (2010). Music Plus One and Machine Learning. In Proceedings of the International Conference on Machine Learning (ICML) (pp. 2128).
  32. 32Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional Continuous Control Using Generalized Advantage Estimation. arXiv preprint arXiv:1506.02438.
  33. 33Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347.
  34. 34Schwarz, D., Orio, N., & Schnell, N. (2004). Robust Polyphonic MIDI Score Following with Hidden Markov Models. In International Computer Music Conference (ICMC). Miami, Florida, USA.
  35. 35Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning Important Features through Propagating Activation Differences. arXiv preprint arXiv:1704.02685.
  36. 36Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic Attribution for Deep Networks. arXiv preprint arXiv:1703.01365.
  37. 37Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning. MIT Press, 2nd edition.
  38. 38Thomas, V., Fremerey, C., Müller, M., & Clausen, M. (2012). Linking Sheet Music and Audio – Challenges and New Approaches. In M. Müller, M. Goto, & M. Schedl (Eds.), Multimodal Music Processing, volume 3 of Dagstuhl Follow-Ups (pp. 122). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
  39. 39van der Maaten, L., & Hinton, G. (2008). Visualizing Data Using t-SNE. Journal of Machine Learning Research, 9, 25792605.
  40. 40Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., & Botvinick, M. (2016). Learning to Reinforcement Learn. arXiv preprint arXiv:1611.05763.
  41. 41Widmer, G. (2017). Getting Closer to the Essence of Music: The Con Espressione Manifesto. ACM Transactions on Intelligent Systems and Technology (TIST), 8(2), 19. DOI: 10.1145/2899004
  42. 42Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Machine Learning, 8, 229256. DOI: 10.1007/BF00992696
  43. 43Williams, R. J., & Peng, J. (1991). Function Optimization Using Connectionist Reinforcement Learning Algorithms. Connection Science, 3(3), 241268. DOI: 10.1080/09540099108946587
  44. 44Wu, Y., Mansimov, E., Liao, S., Grosse, R. B., & Ba, J. (2017). Scalable Trust-region Method for Deep Reinforcement Learning Using Kronecker-factored Approximation. CoRR, abs/1708.05144.
DOI: https://doi.org/10.5334/tismir.31 | Journal eISSN: 2514-3298
Language: English
Submitted on: Feb 1, 2019
Accepted on: Sep 12, 2019
Published on: Nov 20, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Florian Henkel, Stefan Balke, Matthias Dorfer, Gerhard Widmer, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.