Have a personal or library account? Click to login
Characterising Confounding Effects in Music Classification Experiments through Interventions Cover

Characterising Confounding Effects in Music Classification Experiments through Interventions

Open Access
|Aug 2019

References

  1. 1Alpaydin, E. (2014). Introduction to Machine Learning. The MIT Press, Cambridge, MA, USA, 3rd edition.
  2. 2Andén, J., & Mallat, S. (2014). Deep Scattering Spectrum. IEEE Transactions on Signal Processing, 62(16), 41144128. DOI: 10.1109/TSP.2014.2326991
  3. 3Bogdanov, D., Porter, A., Herrera, P., & Serra, X. (2016). Cross-Collection Evaluation for Music Classification Tasks. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR’16), pages 379385. New York City, NY, USA.
  4. 4Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J., Zapata, J., & Serra, X. (2013). Essentia: An Audio Analysis Library for Music Information Retrieval. In Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR’13), Curitiba, Brazil.
  5. 5Carterette, B. A. (2012). Multiple Testing in Statistical Analysis of Systems-based Information Retrieval Experiments. ACM Transactions on Information Systems, 30(1), 4:14:34. DOI: 10.1145/2094072.2094076
  6. 6Charalambous, C. C., & Bharath, A. A. (2016). A Data Augmentation Methodology for Training Machine/Deep Learning Gait Recognition Algorithms. In British Machine Vision Conference. DOI: 10.5244/C.30.110
  7. 7Chen, J. H., & Asch, S. M. (2017). Machine Learning and Prediction in Medicine – Beyond the Peak of Inflated Expectations. New England Journal of Medicine, 376(26), 25072509. DOI: 10.1056/NEJMp1702071
  8. 8Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Transfer Learning for Music Classification and Regression Tasks. In Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR’17), Suzhou, China.
  9. 9Cobb, G. W. (1998). Design and Analysis of Experiments. Springer-Verlag.
  10. 10Davis, S. B., & Mermelstein, P. (1980). Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Transactions on Audio, Speech, and Language Processing, 28(4), 357366. DOI: 10.1109/TASSP.1980.1163420
  11. 11Dixon, S., Gouyon, F., & Widmer, G. (2004). Towards Characterisation of Music via Rhythmic Patterns. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR’04), pages 509517. Barcelona, Spain.
  12. 12Drummond, C. (2006). Machine Learning as an Experimental Science (Revisited). In Procedings of the AAAI’06 Workshop on Evaluation for Machine Learning, Boston, MA, USA.
  13. 13Efron, B. (1977). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 126. DOI: 10.1214/aos/1176344552
  14. 14Efron, B. (1983). Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation. Journal of the American Statistical Association, 78(382), 316331. DOI: 10.1080/01621459.1983.10477973
  15. 15Efron, B., & Tibshirani, R. (1997). Improvements on Cross-Validation: The 632+ Bootstrap Method. Journal of the American Statistical Association, 92(438), 548560. DOI: 10.1080/01621459.1997.10474007
  16. 16Eugster, M. J. A. (2011). Benchmark Experiments. A Tool for Analyzing Statistical Learning Algorithms. PhD thesis, Ludwig-Maximilians-Universität München, München, Germany.
  17. 17Flach, P. (2012). Machine Learning. Cambridge University Press. DOI: 10.1017/CBO9780511973000
  18. 18Flexer, A. (2007). A Closer Look on Artist Filters for Musical Genre Classification. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR’07), Vienna, Austria.
  19. 19Flexer, A., & Schnitzer, D. (2010). Effects of Album and Artist Filters in Audio Similarity Computed for Very Large Music Databases. Computer Music Journal, 34(3), 2028. DOI: 10.1162/COMJ_a_00004
  20. 20Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer, 2nd edition. DOI: 10.1007/978-0-387-84858-7
  21. 21Hernández-Orallo, J. (2016). Evaluation in Artificial Intelligence: From Task-Oriented to Ability- Oriented Measurement. Artificial Intelligence Review, 48(3), 397447. DOI: 10.1007/s10462-016-9505-7
  22. 22Hothorn, T., Leisch, F., Zeileis, A., & Hornik, K. (2005). The Design and Analysis of Benchmark Experiments. Journal of Computational and Graphical Statistics, 14(3), 675699. DOI: 10.1198/106186005X59630
  23. 23Kaufman, S., Rosset, S., & Perlich, C. (2011). Leakage in Data Mining: Formulation, Detection, and Avoidance. In Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’11), pages 556563. San Diego, CA, USA. DOI: 10.1145/2020408.2020496
  24. 24Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrica, 30(1–2), 8189. DOI: 10.2307/2332226
  25. 25Langley, P. (1988). Machine Learning as an Experimental Science. Machine Learning, 3(1), 58. DOI: 10.1007/BF00115008
  26. 26Marques, G., Domingues, M. A., Langlois, T., & Gouyon, F. (2011). Three Current Issues in Music Autotagging. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR’11), pages 795800. Miami, FL, USA.
  27. 27Mendelson, A. F., Zuluaga, M. A., Lorenzi, M., Hutton, B. F., & Ourselin, S. (2017). Selection Bias in the Reported Performances of AD Classification Pipelines. NeuroImage: Clinical, 14, 400416. DOI: 10.1016/j.nicl.2016.12.018
  28. 28Mishra, S., Sturm, B. L., & Dixon, S. (2017). Local Interpretable Model-Agnostic Explanations for Music Content Analysis. In Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR’17), Suzhou, China.
  29. 29Montgomery, D. C. (2013). Design and Analysis of Experiments. John Wiley and Sons, 8th edition.
  30. 30Pampalk, E., Flexer, A., & Widmer, G. (2005). Improvements of Audio-Based Similarity and Genre Classification. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR’05), pages 628633, London, UK.
  31. 31Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press, 2nd edition. DOI: 10.1017/CBO9780511803161
  32. 32Pearl, J. (2014). Comment: Understanding Simpson’s Paradox. The American Statistician, 68(1), 813. DOI: 10.1080/00031305.2014.876829
  33. 33Pfungst, O., Stumpf, C., Rahn, C. L., & Angell, J. R. (1911). Clever Hans (the Horse of Mr. von Osten): A Contribution to Experimental, Animal, and Human Psychology. Journal of Philosophy, Psychology and Scientific Methods, 8(24), 663666. DOI: 10.2307/2012691
  34. 34Rodríguez-Algarra, F., Sturm, B. L., & Maruri-Aguilar, H. (2016). Analysing Scattering-Based Music Classification Systems: Where’s the Music? In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR’16), pages 344350. New York City, NY, USA.
  35. 35Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin Company, Boston, MA, USA.
  36. 36Simpson, E. H. (1951). The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, Series B, 13, 238241. DOI: 10.1111/j.2517-6161.1951.tb00088.x
  37. 37Stowell, D. (2017). Reducing Confounding Factors in Automatic Acoustic Recognition of Individual Birds. In Workshop on “Horses” in Applied Machine Learning (HORSE 2017), http://c4dm.eecs.qmul.ac.uk/horse2017/HORSE2017_Stowell.pdf
  38. 38Sturm, B. L. (2014a). A Simple Method to Determine if a Music Information Retrieval System Is a “Horse”. IEEE Transactions on Multimedia, 16(6), 16361644. DOI: 10.1109/TMM.2014.2330697
  39. 39Sturm, B. L. (2014b). The State of the Art Ten Years After a State of the Art: Future Research in Music Information Retrieval. Journal of New Music Research, 43(2), 147172. DOI: 10.1080/09298215.2014.894533
  40. 40Sturm, B. L. (2016a). Revisiting Priorities: Improving MIR Evaluation Practices. In Proceedings of the 17th International Society for Music Information Retrieval Conference (ISMIR’16), New York City, NY, USA.
  41. 41Sturm, B. L. (2016b). The “Horse” Inside: Seeking Causes of the Behaviours of Music Content Analysis Systems. Computers in Entertainment, Special Issue on Musical Metacreation, 14(2). DOI: 10.1145/2967507
  42. 42Trochim, W. M. K., & Donnelly, J. P. (2007). The Research Methods Knowledge Base. Atomic Dog, 3rd edition.
  43. 43Tzanetakis, G., & Cook, P. (2002). Musical Genre Classification of Audio Signals. IEEE Transactions on Speech and Audio Processing, 10(5), 293301. DOI: 10.1109/TSA.2002.800560
  44. 44Urbano, J., Schedl, M., & Serra, X. (2013). Evaluation in Music Information Retrieval. Journal of Intelligent Information Systems, 41(3), 345369. DOI: 10.1007/s10844-013-0249-4
  45. 45Weihs, C., Jannach, D., Vatolkin, I., & Rudolph, G. Editors (2017). Music Data Analysis. Foundations and Applications. CRC Press.
DOI: https://doi.org/10.5334/tismir.24 | Journal eISSN: 2514-3298
Language: English
Submitted on: Oct 19, 2018
Accepted on: Jun 27, 2019
Published on: Aug 21, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Francisco Rodríguez-Algarra, Bob L. Sturm, Simon Dixon, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.