Have a personal or library account? Click to login
Optimising Computational Measures from Behavioural Data Predicts Perceived Consonance Cover

Optimising Computational Measures from Behavioural Data Predicts Perceived Consonance

Open Access
|Sep 2025

References

  1. Bowling, D. L., Purves, D., and Gill, K. Z. (2018). Vocal similarity predicts the relative attraction of musical chords. Proceedings of the National Academy of Sciences, 115(1), 216221. 10.1073/pnas.1713206115.
  2. Buch, E. (1900). Uber die verschmelzungen von empfindungen besonders bei klangeindrucken. Phil. Stud., 15, 240.
  3. Cazden, N. (1945). Musical consonance and dissonance: A cultural criterion. The Journal of Aesthetics and Art Criticism, 4(1), 311. 10.2307/426253.
  4. Cook, N. D. (2009). Harmony perception: Harmoniousness is more than the sum of interval consonance. Music Perception, 27(1), 2542. 10.1525/mp.2009.27.1.25.
  5. Cook, N. D. (2017). Calculation of the acoustical properties of triadic harmonies. The Journal of the Acoustical Society of America, 142(6), 37483755. 10.1121/1.5018342.
  6. Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory. Wiley‑Interscience.
  7. Di Stefano, N. (2024). Cultural accounts of consonance perception. A Lakatosian approach to save Pythagoras. Music Perception, 42, 165176. 10.1525/mp.2024.42.2.165.
  8. Di Stefano, N., Vuust, P., and Brattico, E. (2022). Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses. Physics of Life Reviews, 43, 273304. 10.1016/j.plrev.2022.10.004.
  9. Dillon, G. (2013). Calculating the dissonance of a chord according to Helmholtz theory. The European Physical Journal Plus, 128(8), 90. 10.1140/epjp/i2013-13090-4.
  10. Euler, L. (1739). Tentamen Novae Theoriae Musicae. Hartknoch.
  11. Faist, A. (1897). Versuche über tonverschmelzung. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 15, 102131.
  12. Harrison, P. M. C., and Pearce, M. (2018). An energy‑based generative sequence model for testing sensory theories of Western harmony. In Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, France.
  13. Harrison, P. M. C., and Pearce, M. T. (2020). Simultaneous consonance in music perception and composition. Psychological Review, 127(2), 216244. 10.1037/rev0000169.
  14. Helmholtz, H. V. (1863/1912). On the Sensations of Tone as a Physiological Basis for the Theory of Music (3rd English ed.). Longman, Green & Co.
  15. Hindemith, P. (1942). The Craft of Musical Composition: Book 1: Theoretical Part. Schott & Co.
  16. Huron, D. (1994). Interval‑class content in equally tempered pitch‑class sets: Common scales exhibit optimum tonal consonance. Music Perception, 11(3), 289305. 10.2307/40285624.
  17. Hutchinson, W., and Knopoff, L. (1978). The acoustic component of Western consonance. Interface, 7(1), 129. 10.1080/09298217808570246.
  18. Johnson‑Laird, P. N., Kang, O. E., and Leong, Y. C. (2012). On musical dissonance. Music Perception, 30(1), 1935. 10.1525/mp.2012.30.1.19.
  19. Kameoka, A., and Kuriyagawa, M. (1969). Consonance theory part II: Consonance of complex tones and its calculation method. The Journal of the Acoustical Society of America, 45(6), 14601469. 10.1121/1.1911624.
  20. Krueger, F. (1913). Consonance and dissonance. Journal of Philosophical, Psychological, and Scientific Methods, 10(6), 158.
  21. Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. Oxford University Press.
  22. Malmberg, C. F. (1918). The perception of consonance and dissonance. Psychological Monographs, 25(2), 93133. 10.1037/h0093119.
  23. Mashinter, K. (2006). Calculating sensory dissonance: Some discrepancies arising from the models of Kameoka & Kuriyagawa, and Hutchinson & Knopoff. Empirical Musicology Review, 1(2), 6584. 10.18061/1811/24077.
  24. McDermott, J. H., Schultz, A. F., Undurraga, E. A., and Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535(7613), 547550. 10.1038/nature18635.
  25. Meinong, A., and Witasek, S. (1897). Zur experimentellen bestimmung der tonverschmelzungsgrade. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 15, 189205.
  26. Milne, A. J. (2013). A Computational Model of the Cognition of Tonality [PhD thesis]. Open University, Milton Keynes.
  27. Milne, A. J., Laney, R., and Sharp, D. B. (2016). Testing a spectral model of tonal affinity with microtonal melodies and inharmonic spectra. Musicae Scientiae, 20(4), 465494. 10.1177/1029864915622682.
  28. Omigie, D., Dellacherie, D., and Samson, S. (2017). Effects of learning on dissonance judgments. Journal of Interdisciplinary Music Studies, 8, 1128. 10.4407/jims.2016.12.001.
  29. Parncutt, R., and Hair, G. (2018). A psychocultural theory of musical interval: Bye bye Pythagoras. Music Perception, 35(4), 475501. 10.1525/mp.2018.35.4.475.
  30. Parncutt, R., Reisinger, D., Fuchs, A., and Kaiser, F. (2019). Consonance and prevalence of sonorities in Western polyphony: Roughness, harmonicity, familiarity, evenness, diatonicity. Journal of New Music Research, 48(1), 120. 10.1080/09298215.2018.1477804.
  31. Pear, T. H. (1911). The experimental examination of some differences between the major and the minor chord. British Journal of Psychology, 4, 5688. 10.1111/j.2044-8295.1911.tb00038.x.
  32. Plomp, R., and Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. The Journal of the Acoustical Society of America, 38(4), 548560. 10.1121/1.1909741.
  33. Popescu, T., Neuser, M. P., Neuwirth, M., Bravo, F., Mende, W., Boneh, O., Moss, F. C., and Rohrmeier, M. (2019). The pleasantness of sensory dissonance is mediated by musical style and expertise. Scientific Reports, 9(1), 1070. 10.1038/s41598-018-35873-8.
  34. Rameau, J.‑P. (1722). Treatise on Harmony. Dover Publications.
  35. Roberts, L. A. (1986). Consonance judgements of musical chords by musicians and untrained listeners. Acta Acustica United with Acustica, 62(2), 163171.
  36. Schneider, A. (1997). “Verschmelzung,” tonal fusion, and consonance: Carl Stumpf revisited. In M. Leman (Ed.), Music, Gestalt, and Computing (pp. 115143). Springer. 10.1007/BFb0034111.
  37. Schoenberg, A. (1948). Theory of Harmony. University of California Press.
  38. Schwartz, D. A., Howe, C. Q., and Purves, D. (2003). The statistical structure of human speech sounds predicts musical universals. Journal of Neuroscience, 23(18), 71607168. 10.1523/JNEUROSCI.23-18-07160.2003.
  39. Sethares, W. (2005). Tuning, Timbre, Spectrum, Scale (2nd ed.). Springer.
  40. Stolzenburg, F. (2015). Harmony perception by periodicity detection. Journal of Mathematics and Music, 9(3), 215238. 10.1080/17459737.2015.1033024.
  41. Stumpf, C. (1890). Tonpsychologie. Verlag S. Hirzel.
  42. Stumpf, C. (1898). Konsonanz und dissonanz. Beiträge zur Akustik und Musikwissenschaft, 1, 91107.
  43. Terhardt, E. (1984). The concept of musical consonance: A link between music and psychoacoustics. Music Perception, 1(3), 276295. 10.2307/40285261.
DOI: https://doi.org/10.5334/tismir.243 | Journal eISSN: 2514-3298
Language: English
Submitted on: Dec 5, 2024
Accepted on: Jul 24, 2025
Published on: Sep 5, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Edward T. R. Hall, Ran Tamir, Martin Rohrmeier, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.