Have a personal or library account? Click to login
A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing Cover

A Basic Tutorial on Novelty and Activation Functions for Music Signal Processing

Open Access
|Sep 2024

References

  1. Balke, S., Reck, J., Weiß, C., Abeßer, J., and Müller, M. (2022). JSD: A dataset for structure analysis in jazz music. Transactions of the International Society for Music Information Retrieval (TISMIR), 5(1), 156172.
  2. Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M. B. (2005). A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing, 13(5), 10351047.
  3. Benetos, E., Dixon, S., Duan, Z., and Ewert, S. (2019). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1), 2030.
  4. Bittner, R. M., Fuentes, M., Rubinstein, D., Jansson, A., Choi, K., and Kell, T. (2019). mirdata: Software for reproducible usage of datasets. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 99106).
  5. Böck, S., and Widmer, G. (2013). Maximum filter vibrato suppression for onset detections. In Proceedings of the International Confenference on Digital Audio Effects (DAFx).
  6. Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., and Widmer, G. (2016). madmom: A new Python audio & music signal processing library. In Proceedings of the ACM International Conference on Multimedia (ACM‑MM) (pp. 11741178).
  7. Böck, S., Krebs, F., and Schedl, M. (2012). Evaluating the online capabilities of onset detection methods. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 4954).
  8. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123140. 10.1007/bf00058655
  9. Downie, J. S. (2008). The music information retrieval evaluation exchange (2005–2007): A window into music information retrieval research. Acoustical Science and Technology, 29(4), 247255. 10.1250/ast.29.247
  10. Ellis, D. P. (2007). Beat tracking by dynamic programming. Journal of New Music Research, 36(1), 5160. 10.1080/09298210701653344
  11. Eyben, F., Böck, S., Schuller, B., and Graves, A. (2010). Universal onset detection with bidirectional long short‑term memory neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 589594).
  12. Flexer, A. (2014). On inter‑rater agreement in audio music similarity. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 245250).
  13. Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME) (pp. 452455).
  14. Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002). RWC music database: Popular, classical and jazz music databases. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 287288).
  15. Gouyon, F., Klapuri, A. P., Dixon, S., Alonso, M., Tzanetakis, G., Uhle, C., and Cano, P. (2006). An experimental comparison of audio tempo induction algorithms. IEEE Transactions on Audio, Speech, and Language Processing, 14(5), 18321844. 10.1109/tsa.2005.858509
  16. Grosche, P., and Müller, M. (2011). Extracting predominant local pulse information from music recordings. IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 16881701. 10.1109/tasl.2010.2096216
  17. Grosche, P., Müller, M., and Sapp, C. S. (2010). What makes beat tracking difficult? A case study on Chopin Mazurkas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 649654).
  18. Harte, C., Sandler, M. B., Abdallah, S., and Gómez, E. (2005). Symbolic representation of musical chords: A proposed syntax for text annotations. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 6671).
  19. Klapuri, A. P., Eronen, A. J., and Astola, J. (2006). Analysis of the meter of acoustic musical signals. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 342355. 10.1109/tsa.2005.854090
  20. Krebs, F., Böck, S., and Widmer, G. (2015). An efficient state‑space model for joint tempo and meter tracking. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 7278).
  21. Lostanlen, V., Palmer, K., Knight, E., Clark, C. W., Klinck, H., Farnsworth, A., Wong, T., Cramer, J., and Bello, J. P. (2019). Long‑distance detection of bioacoustic events with per‑channel energy normalization. In Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE) (pp. 144148).
  22. Lukashevich, H. (2008). Towards quantitative measures of evaluating song segmentation. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 375380).
  23. McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., and Nieto, O. (2015). Librosa: Audio and music signal analysis in Python. In Proceedings of the Python Science Conference (pp. 1825).
  24. Müller, M. (2021). Fundamentals of music processing using Python and Jupyter Notebooks (2nd ed.). Springer Verlag.
  25. Müller, M., and Zalkow, F. (2019). FMP Notebooks: Educational material for teaching and learning fundamentals of music processing. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 573580).
  26. Müller, M., and Zalkow, F. (2021). libfmp: A Python package for fundamentals of music processing. Journal of Open Source Software (JOSS), 6(63), 15.
  27. Müller, M., McFee, B., and Kinnaird, K. (2021). Interactive learning of signal processing through music: Making Fourier analysis concrete for students. IEEE Signal Processing Magazine, 38(3), 7384. 10.1109/msp.2021.3052181
  28. Nieto, O., and Bello, J. P. (2016). Systematic exploration of computational music structure research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 547553).
  29. Paulus, J., Müller, M., and Klapuri, A. (2010). Audiobased music structure analysis. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 625636).
  30. Pauwels, J., O’Hanlon, K., Gómez, E., and Sandler, M. B. (2019). 20 years of automatic chord recognition from audio. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 5463).
  31. Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., and Ellis, D. P. W. (2014). mir_eval: A transparent implementation of common MIR metrics. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 367372).
  32. Schlüter, J., and Böck, S. (2014). Improved musical onset detection with convolutional neural networks. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 69796983).
  33. Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio.
  34. Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., Roure, D. D., and Downie, J. S. (2011). Design and creation of a large‑scale database of structural annotations. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 555560).
  35. Tzanetakis, G., and Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5), 293302. 10.1109/tsa.2002.800560
  36. Ullrich, K., Schlüter, J., and Grill, T. (2014). Boundary detection in music structure analysis using convolutional neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 417422).
  37. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., and Larson, E. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261272. 10.1038/s41592-020-0772-5
DOI: https://doi.org/10.5334/tismir.202 | Journal eISSN: 2514-3298
Language: English
Submitted on: May 7, 2024
Accepted on: Aug 12, 2024
Published on: Sep 19, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Meinard Müller, Ching-Yu Chiu, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.