Have a personal or library account? Click to login
A Real-Time Beat Tracking System with Zero Latency and Enhanced Controllability Cover

A Real-Time Beat Tracking System with Zero Latency and Enhanced Controllability

Open Access
|Oct 2024

References

  1. Böck, S., and Davies, M. E. P. (2020). Deconstruct, analyse, reconstruct: How to improve tempo, beat, and downbeat estimation. In J. Cumming, J. H. Lee, B. McFee, M. Schedl, J. Devaney, C. McKay, E. Zangerle, and T. de Reuse (Eds.), Proceedings of the 21th International Society for Music Information Retrieval Conference (ISMIR), Montréal, Canada, pp. 574582.
  2. Böck, S., Korzeniowski, F., Schlüter, J., Krebs, F., and Widmer, G. (2016a). Madmom: A new Python audio and music signal processing library. In Proceedings of the ACM International Conference on Multimedia (ACM-MM), Amsterdam, The Netherlands, pp. 11741178.
  3. Böck, S., Krebs, F., and Widmer, G. (2014). A multimodel approach to beat tracking considering heterogeneous music styles. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan, pp. 603608.
  4. Böck, S., Krebs, F., and Widmer, G. (2016b). Joint beat and downbeat tracking with recurrent neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), New York City, New York, USA, pp. 255261.
  5. Böck, S., and Schedl, M. (2011). Enhanced beat tracking with context-aware neural networks. In Proceedings of the International Conference on Digital Audio Effects (DAFx), Paris, France, pp. 135139.
  6. Chang, C.-C., and Su, L. (2024). Beast: Online joint beat and downbeat tracking based on streaming transformer. In ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, pp. 396400.
  7. Clercq, T., and Temperley, D. (2011). A corpus analysis of rock harmony. Popular Music, 30, 4770.
  8. Davies, E. P. M., and Böck, S. (2019). Temporal convolutional networks for musical audio beat tracking. In 27th European Signal Processing Conference (EUSIPCO), A Coruña, Spain, pp. 15. IEEE.
  9. Dixon, S., and Cambouropoulos, E. (2000). Beat tracking with musical knowledge. In W. Horn (Ed.), ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence, pp. 626630. IOS Press.
  10. Durand, S., Bello, J. P., David, B., and Richard, G. (2015). Downbeat tracking with multiple features and deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2015, South Brisbane, Queensland, Australia, pp. 409413. IEEE.
  11. Ellis, D. P. (2007). Beat tracking by dynamic programming. Journal of New Music Research, 36(1), 5160.
  12. Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002). RWC music database: Popular, classical and jazz music databases. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 287288.
  13. Gouyon, F., Klapuri, A. P., Dixon, S., Alonso, M., Tzanetakis, G., Uhle, C., and Cano, P. (2006). An experimental comparison of audio tempo induction algorithms. IEEE Transactions on Audio, Speech, and Language Processing, 14(5), 18321844.
  14. Grosche, P., and Müller, M. (2011). Extracting predominant local pulse information from music recordings. IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 16881701.
  15. Heydari, M., Cwitkowitz, F., and Duan, Z. (2021). Beatnet: Crnn and particle filtering for online joint beat downbeat and meter tracking. In 22th International Society for Music Information Retrieval Conference (ISMIR), Online.
  16. Heydari, M., McCallum, M., Ehmann, A., and Duan, Z. (2022). A novel 1d state space for efficient music rhythmic analysis. In ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 421425. IEEE.
  17. Holzapfel, A., and Grill, T. (2016). Bayesian meter tracking on learned signal representations. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), New York City, New York, USA, pp. 262268.
  18. Hung, Y., Wang, J., Song, X., Lu, W. T., and Won, M. (2022). Modeling beats and downbeats with a time-frequency transformer. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual and Singapore, pp. 401405.
  19. Klapuri, A. P., Eronen, A. J., and Astola, J. (2006). Analysis of the meter of acoustic musical signals. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 342355.
  20. Krebs, F., Böck, S., Dorfer, M., and Widmer, G. (2016). Downbeat tracking using beat synchronous features with recurrent neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), New York City, New York, USA, pp. 129135.
  21. Krebs, F., Böck, S., and Widmer, G. (2015). An efficient state-space model for joint tempo and meter tracking. In M. Müller and F. Wiering (Eds.), Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), Málaga, Spain, pp. 7278.
  22. Meier, P., Krump, G., and Müller, M. (2021). A realtime beat tracking system based on predominant local pulse information. In Demos and late breaking news of the International Society for Music Information Retrieval Conference (ISMIR), Online.
  23. Meier, P., Schwär, S., Rosenzweig, S., and Müller, M. (2022). Real-Time MIR algorithms for music-reactive game world generation. In Mensch und Computer 2022 - Workshopband, Gesellschaft für Informatik e.V.
  24. Müller, M. (2021). Fundamentals of music processing using Python and Jupyter notebooks (2nd ed.). Springer Verlag.
  25. Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., and Ellis, D. P. W. (2014). MIR_EVAL: A transparent implementation of common MIR metrics. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan, pp. 367372.
  26. Schreiber, H., Zalkow, F., and Müller, M. (2020). Modeling and estimating local tempo: A case study on Chopin’s mazurkas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Montréal, Canada, pp. 773779.
  27. Stefani, D., and Turchet, L. (2022). On the challenges of embedded real-time music information retrieval. In Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), pp. 177184.
  28. Tzanetakis, G., and Cook, P. R. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5), 293302.
  29. Zhao, J., Xia, G., and Wang, Y. (2022). Beat transformer: Demixed beat and downbeat tracking with dilated self-attention. In Proceedings of the 23rd International Society for Music Information Retrieval Conference (ISMIR), Bengaluru, India, pp. 169177.
DOI: https://doi.org/10.5334/tismir.189 | Journal eISSN: 2514-3298
Language: English
Submitted on: Mar 2, 2024
Accepted on: Aug 1, 2024
Published on: Oct 1, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Peter Meier, Ching-Yu Chiu, Meinard Müller, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.