References
- 1Benetos, E., Dixon, S., Duan, Z., and Ewert, S. (2019). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1):20–30. DOI: 10.1109/MSP.2018.2869928
- 2Böck, S., Krebs, F., and Widmer, G. (2016). Joint beat and downbeat tracking with recurrent neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 255–261, New York City, New York, USA.
- 3Bosch, J. J. (2013). Automatic melodic and structural analysis of music material for enriched concert related experiences. In Proceeings of the ACM Multimedia Conference, pages 1067–1070, Barcelona, Spain. DOI: 10.1145/2502081.2502218
- 4Brazier, C. and Widmer, G. (2021). Handling structural mismatches in real-time opera tracking. In Proceedings of the European Signal Processing Conference (EUSIPCO), pages 366–370, Dublin, Ireland. DOI: 10.23919/EUSIPCO54536.2021.9616109
- 5Brown, H. M., Rosand, E., Strohm, R., Parker, R., Whittall, A., Savage, R., and Millington, B. (2001).
Opera . In Sadie, S., editor, The New Grove Dictionary of Music and Musicians, pages 416–471. Macmillian Publishers, London, 2nd edition. DOI: 10.1093/gmo/9781561592630.article.40726 - 6Calvo-Zaragoza, J., Hajič, J.
Jr. , and Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys, 53(4). DOI: 10.1145/3397499 - 7Cannam, C., Landone, C., Sandler, M. B., and Bello, J. P. (2006). The Sonic Visualiser: A visualisation platform for semantic descriptors from musical signals. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 324–327, Victoria, Canada.
- 8Dorfer, M., Hajič, J.
Jr. , Arzt, A., Frostel, H., and Widmer, G. (2018). Learning audio-sheet music correspondences for cross-modal retrieval and piece identification. Transactions of the International Society for Music Information (TISMIR), 1(1):22–31. DOI: 10.5334/tismir.12 - 9Driedger, J., Balke, S., Ewert, S., and Muller, M. (2016). Template-based vibrato analysis of music signals. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 239–245, New York City, New York, USA.
- 10Gadermaier, T. and Widmer, G. (2019). A study of annotation and alignment accuracy for performance comparison in complex orchestral music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 769–775, Delft, The Netherlands.
- 11Gao, X., Gupta, C., and Li, H. (2022). Genre-conditioned acoustic models for automatic lyrics transcription of polyphonic music. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 791–795, Virtual and Singapore. DOI: 10.1109/ICASSP43922.2022.9747684
- 12Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C. A., Dieleman, S., Elsen, E., Engel, J. H., and Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, Louisiana, USA.
- 13Hewlett, W. B. and Selfridge-Field, E. (1991). Computing in musicology, 1966-91. Computers and the Humanities, 25(6):381–392. DOI: 10.1007/BF00141188
- 14Konz, V., Müller, M., and Kleinertz, R. (2013). A cross-version chord labelling approach for exploring harmonic structures—a case study on Beethoven’s Appassionata. Journal of New Music Research, 42(1):61–77. DOI: 10.1080/09298215.2012.750369
- 15Kornstädt, A. (2001). The JRing system for computer-assisted musicological analysis. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), pages 93–98, Bloomington, Indiana, USA.
- 16Krause, M. and Müller, M. (2022). Hierarchical classification of singing activity, gender, and type in complex music recordings. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 406–410, Singapore. DOI: 10.1109/ICASSP43922.2022.9747690
- 17Krause, M., Müller, M., and Weiß, C. (2021a). Singing voice detection in opera recordings: A case study on robustness and generalization. Electronics, 10(10):1214:1–14. DOI: 10.3390/electronics10101214
- 18Krause, M., Müller, M., and Weiß, C. (2021b). Towards leitmotif activity detection in opera recordings. Transactions of the International Society for Music Information Retrieval (TISMIR), 4(1):127–140. DOI: 10.5334/tismir.116
- 19Krause, M., Zalkow, F., Zalkow, J., Weiß, C., and Muller, M. (2020). Classifying leitmotifs in recordings of operas by Richard Wagner. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 473–480, Montréal, Canada.
- 20Lerch, A., Arthur, C., Pati, A., and Gururani, S. (2020). An interdisciplinary review of music performance analysis. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):221–245. DOI: 10.5334/tismir.53
- 21Meredith, D., editor (2016). Computational Music Analysis. Springer. DOI: 10.1007/978-3-319-25931-4
- 22Mimilakis, S. I., Weiß, C., Arifi-Müller, V., Abeser, J., and Müller, M. (2019). Cross-version singing voice detection in opera recordings: Challenges for supervised learning. In Machine Learning and Knowledge Discovery in Databases – Proceedings of the International Workshops of ECML PKDD 2019, Part II, volume 1168 of Communications in Computer and Information Science, pages 429–436, Würzburg, Germany. DOI: 10.1007/978-3-030-43887-6_35
- 23Müllensiefen, D., Baker, D., Rhodes, C., Crawford, T., and Dreyfus, L. (2016).
Recognition of leitmotives in Richard Wagner’s music: An item response theory approach . In Analysis of Large and Complex Data, pages 473–483. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-25226-1_40 - 24Müller, M. (2021). Fundamentals of Music Processing – Using Python and Jupyter Notebooks. Springer, 2nd edition. DOI: 10.1007/978-3-030-69808-9
- 25Müller, M., Arzt, A., Balke, S., Dorfer, M., and Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1):52–62. DOI: 10.1109/MSP.2018.2868887
- 26Müller, M., Özer, Y., Krause, M., Prätzlich, T., and Driedger, J. (2021). Sync Toolbox: A Python package for efficient, robust, and accurate music synchronization. Journal of Open Source Software (JOSS), 6(64):3434:1–4. DOI: 10.21105/joss.03434
- 27Nieto, O., Mysore, G. J., Wang, C., Smith, J. B. L., Schlüter, J., Grill, T., and McFee, B. (2020). Audiobased music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):246–263. DOI: 10.5334/tismir.78
- 28Page, K. R., Nurmikko-Fuller, T., Rindfleisch, C., Weigl, D. M., Lewis, R., Dreyfus, L., and De Roure, D. (2015). A toolkit for live annotation of opera performance: Experiences capturing Wagner’s Ring cycle. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 211–217, Málaga, Spain.
- 29Prätzlich, T., Driedger, J., and Müller, M. (2016). Memory-restricted multiscale dynamic time warping. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 569–573, Shanghai, China. DOI: 10.1109/ICASSP.2016.7471739
- 30Prätzlich, T. and Müller, M. (2013). Freischutz Digital: A case study for reference-based audio segmentation of operas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 589–594, Curitiba, Brazil.
- 31Prätzlich, T. and Müller, M. (2016). Triple-based analysis of music alignments without the need of ground-truth annotations. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 266–270, Shanghai, China. DOI: 10.1109/ICASSP.2016.7471678
- 32Rindfleisch, C. (2016). Modelling music reception: An ontology for representing interpretations of Richard Wagner’s leitmotifs. In Proceedings of the International Conference of the Alliance of Digital Humanities Organizations (DH), pages 333–336, Krakow, Poland.
- 33Röwenstrunk, D., Prätzlich, T., Betzwieser, T., Müller, M., Szwillus, G., and Veit, J. (2015). Das Gesamtkunstwerk Oper aus Datensicht – Aspekte des Umgangs mit einer heterogenen Datenlage im BMBF-Projekt “Freischütz Digital”. Datenbank-Spektrum, 15(1):65–72. DOI: 10.1007/s13222-015-0179-0
- 34Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio, London, UK.
- 35Stoller, D., Durand, S., and Ewert, S. (2019). End-toend lyrics alignment for polyphonic music using an audio-to-character recognition model. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 181–185, Brighton, UK. DOI: 10.1109/ICASSP.2019.8683470
- 36Thickstun, J., Harchaoui, Z., and Kakade, S. M. (2017). Learning features of music from scratch. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France.
- 37Tzanetakis, G. (2014). Computational ethnomusicology: A music information retrieval perspective. In Proceedings of the Joint Conference 40th International Computer Music Conference (ICMC) and 11th Sound and Music Computing Conference (SMC), pages 69–73, Athens, Greece.
- 38Volk, A., Wiering, F., and van Kranenburg, P. (2011). Unfolding the potential of computational musicology. In Proceedings of the International Conference on Informatics and Semiotics in Organisations (ICISO), pages 137–144, Leeuwarden, The Netherlands.
- 39Wagner, R. (1852). Oper und Drama. J. J. Weber, Leipzig, Germany.
- 40Wagner, R. (2010–2014). Der Ring des Nibelungen. ed. Egon Voss, 4 vols., Mainz, Germany: Schott Music.
- 41Weiß, C., Arifi-Müller, V., Prätzlich, T., Kleinertz, R., and Müller, M. (2016). Analyzing measure annotations for Western classical music recordings. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 517–523, New York, USA.
- 42Weiß, C., Zalkow, F., Müller, M., Klauk, S., and Kleinertz, R. (2017). Versionsübergreifende Visualisierung harmonischer Verläufe: Eine Fallstudie zu Wagners Ring-Zyklus. In Proceedings of the Jahrestagung der Gesellschaft fur Informatik (GI), pages 205–217, Chemnitz, Germany.
- 43Weiß, C., Zeitler, J., Zunner, T., Schuberth, F., and Müller, M. (2021). Learning pitch-class representations from score–audio pairs of classical music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 746–753, Online.
- 44Zalkow, F., Weiß, C., and Müller, M. (2017a). Exploring tonal-dramatic relationships in Richard Wagner’s Ring cycle. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 642–648, Suzhou, China.
- 45Zalkow, F., Weiß, C., Prätzlich, T., Arifi-Müller, V., and Müller, M. (2017b). A multi-version approach for transferring measure annotations between music recordings. In Proceedings of the AES International Conference on Semantic Audio, pages 148–155, Erlangen, Germany.
