Have a personal or library account? Click to login
Wagner Ring Dataset: A Complex Opera Scenario for Music Processing and Computational Musicology Cover

Wagner Ring Dataset: A Complex Opera Scenario for Music Processing and Computational Musicology

Open Access
|Oct 2023

References

  1. 1Benetos, E., Dixon, S., Duan, Z., and Ewert, S. (2019). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1):2030. DOI: 10.1109/MSP.2018.2869928
  2. 2Böck, S., Krebs, F., and Widmer, G. (2016). Joint beat and downbeat tracking with recurrent neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 255261, New York City, New York, USA.
  3. 3Bosch, J. J. (2013). Automatic melodic and structural analysis of music material for enriched concert related experiences. In Proceeings of the ACM Multimedia Conference, pages 10671070, Barcelona, Spain. DOI: 10.1145/2502081.2502218
  4. 4Brazier, C. and Widmer, G. (2021). Handling structural mismatches in real-time opera tracking. In Proceedings of the European Signal Processing Conference (EUSIPCO), pages 366370, Dublin, Ireland. DOI: 10.23919/EUSIPCO54536.2021.9616109
  5. 5Brown, H. M., Rosand, E., Strohm, R., Parker, R., Whittall, A., Savage, R., and Millington, B. (2001). Opera. In Sadie, S., editor, The New Grove Dictionary of Music and Musicians, pages 416471. Macmillian Publishers, London, 2nd edition. DOI: 10.1093/gmo/9781561592630.article.40726
  6. 6Calvo-Zaragoza, J., Hajič, J. Jr., and Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys, 53(4). DOI: 10.1145/3397499
  7. 7Cannam, C., Landone, C., Sandler, M. B., and Bello, J. P. (2006). The Sonic Visualiser: A visualisation platform for semantic descriptors from musical signals. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 324327, Victoria, Canada.
  8. 8Dorfer, M., Hajič, J. Jr., Arzt, A., Frostel, H., and Widmer, G. (2018). Learning audio-sheet music correspondences for cross-modal retrieval and piece identification. Transactions of the International Society for Music Information (TISMIR), 1(1):2231. DOI: 10.5334/tismir.12
  9. 9Driedger, J., Balke, S., Ewert, S., and Muller, M. (2016). Template-based vibrato analysis of music signals. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 239245, New York City, New York, USA.
  10. 10Gadermaier, T. and Widmer, G. (2019). A study of annotation and alignment accuracy for performance comparison in complex orchestral music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 769775, Delft, The Netherlands.
  11. 11Gao, X., Gupta, C., and Li, H. (2022). Genre-conditioned acoustic models for automatic lyrics transcription of polyphonic music. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 791795, Virtual and Singapore. DOI: 10.1109/ICASSP43922.2022.9747684
  12. 12Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C. A., Dieleman, S., Elsen, E., Engel, J. H., and Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, Louisiana, USA.
  13. 13Hewlett, W. B. and Selfridge-Field, E. (1991). Computing in musicology, 1966-91. Computers and the Humanities, 25(6):381392. DOI: 10.1007/BF00141188
  14. 14Konz, V., Müller, M., and Kleinertz, R. (2013). A cross-version chord labelling approach for exploring harmonic structures—a case study on Beethoven’s Appassionata. Journal of New Music Research, 42(1):6177. DOI: 10.1080/09298215.2012.750369
  15. 15Kornstädt, A. (2001). The JRing system for computer-assisted musicological analysis. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR), pages 9398, Bloomington, Indiana, USA.
  16. 16Krause, M. and Müller, M. (2022). Hierarchical classification of singing activity, gender, and type in complex music recordings. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 406410, Singapore. DOI: 10.1109/ICASSP43922.2022.9747690
  17. 17Krause, M., Müller, M., and Weiß, C. (2021a). Singing voice detection in opera recordings: A case study on robustness and generalization. Electronics, 10(10):1214:114. DOI: 10.3390/electronics10101214
  18. 18Krause, M., Müller, M., and Weiß, C. (2021b). Towards leitmotif activity detection in opera recordings. Transactions of the International Society for Music Information Retrieval (TISMIR), 4(1):127140. DOI: 10.5334/tismir.116
  19. 19Krause, M., Zalkow, F., Zalkow, J., Weiß, C., and Muller, M. (2020). Classifying leitmotifs in recordings of operas by Richard Wagner. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 473480, Montréal, Canada.
  20. 20Lerch, A., Arthur, C., Pati, A., and Gururani, S. (2020). An interdisciplinary review of music performance analysis. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):221245. DOI: 10.5334/tismir.53
  21. 21Meredith, D., editor (2016). Computational Music Analysis. Springer. DOI: 10.1007/978-3-319-25931-4
  22. 22Mimilakis, S. I., Weiß, C., Arifi-Müller, V., Abeser, J., and Müller, M. (2019). Cross-version singing voice detection in opera recordings: Challenges for supervised learning. In Machine Learning and Knowledge Discovery in Databases – Proceedings of the International Workshops of ECML PKDD 2019, Part II, volume 1168 of Communications in Computer and Information Science, pages 429436, Würzburg, Germany. DOI: 10.1007/978-3-030-43887-6_35
  23. 23Müllensiefen, D., Baker, D., Rhodes, C., Crawford, T., and Dreyfus, L. (2016). Recognition of leitmotives in Richard Wagner’s music: An item response theory approach. In Analysis of Large and Complex Data, pages 473483. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-25226-1_40
  24. 24Müller, M. (2021). Fundamentals of Music Processing – Using Python and Jupyter Notebooks. Springer, 2nd edition. DOI: 10.1007/978-3-030-69808-9
  25. 25Müller, M., Arzt, A., Balke, S., Dorfer, M., and Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1):5262. DOI: 10.1109/MSP.2018.2868887
  26. 26Müller, M., Özer, Y., Krause, M., Prätzlich, T., and Driedger, J. (2021). Sync Toolbox: A Python package for efficient, robust, and accurate music synchronization. Journal of Open Source Software (JOSS), 6(64):3434:14. DOI: 10.21105/joss.03434
  27. 27Nieto, O., Mysore, G. J., Wang, C., Smith, J. B. L., Schlüter, J., Grill, T., and McFee, B. (2020). Audiobased music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):246263. DOI: 10.5334/tismir.78
  28. 28Page, K. R., Nurmikko-Fuller, T., Rindfleisch, C., Weigl, D. M., Lewis, R., Dreyfus, L., and De Roure, D. (2015). A toolkit for live annotation of opera performance: Experiences capturing Wagner’s Ring cycle. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 211217, Málaga, Spain.
  29. 29Prätzlich, T., Driedger, J., and Müller, M. (2016). Memory-restricted multiscale dynamic time warping. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 569573, Shanghai, China. DOI: 10.1109/ICASSP.2016.7471739
  30. 30Prätzlich, T. and Müller, M. (2013). Freischutz Digital: A case study for reference-based audio segmentation of operas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 589594, Curitiba, Brazil.
  31. 31Prätzlich, T. and Müller, M. (2016). Triple-based analysis of music alignments without the need of ground-truth annotations. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 266270, Shanghai, China. DOI: 10.1109/ICASSP.2016.7471678
  32. 32Rindfleisch, C. (2016). Modelling music reception: An ontology for representing interpretations of Richard Wagner’s leitmotifs. In Proceedings of the International Conference of the Alliance of Digital Humanities Organizations (DH), pages 333336, Krakow, Poland.
  33. 33Röwenstrunk, D., Prätzlich, T., Betzwieser, T., Müller, M., Szwillus, G., and Veit, J. (2015). Das Gesamtkunstwerk Oper aus Datensicht – Aspekte des Umgangs mit einer heterogenen Datenlage im BMBF-Projekt “Freischütz Digital”. Datenbank-Spektrum, 15(1):6572. DOI: 10.1007/s13222-015-0179-0
  34. 34Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio, London, UK.
  35. 35Stoller, D., Durand, S., and Ewert, S. (2019). End-toend lyrics alignment for polyphonic music using an audio-to-character recognition model. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 181185, Brighton, UK. DOI: 10.1109/ICASSP.2019.8683470
  36. 36Thickstun, J., Harchaoui, Z., and Kakade, S. M. (2017). Learning features of music from scratch. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France.
  37. 37Tzanetakis, G. (2014). Computational ethnomusicology: A music information retrieval perspective. In Proceedings of the Joint Conference 40th International Computer Music Conference (ICMC) and 11th Sound and Music Computing Conference (SMC), pages 6973, Athens, Greece.
  38. 38Volk, A., Wiering, F., and van Kranenburg, P. (2011). Unfolding the potential of computational musicology. In Proceedings of the International Conference on Informatics and Semiotics in Organisations (ICISO), pages 137144, Leeuwarden, The Netherlands.
  39. 39Wagner, R. (1852). Oper und Drama. J. J. Weber, Leipzig, Germany.
  40. 40Wagner, R. (2010–2014). Der Ring des Nibelungen. ed. Egon Voss, 4 vols., Mainz, Germany: Schott Music.
  41. 41Weiß, C., Arifi-Müller, V., Prätzlich, T., Kleinertz, R., and Müller, M. (2016). Analyzing measure annotations for Western classical music recordings. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 517523, New York, USA.
  42. 42Weiß, C., Zalkow, F., Müller, M., Klauk, S., and Kleinertz, R. (2017). Versionsübergreifende Visualisierung harmonischer Verläufe: Eine Fallstudie zu Wagners Ring-Zyklus. In Proceedings of the Jahrestagung der Gesellschaft fur Informatik (GI), pages 205217, Chemnitz, Germany.
  43. 43Weiß, C., Zeitler, J., Zunner, T., Schuberth, F., and Müller, M. (2021). Learning pitch-class representations from score–audio pairs of classical music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 746753, Online.
  44. 44Zalkow, F., Weiß, C., and Müller, M. (2017a). Exploring tonal-dramatic relationships in Richard Wagner’s Ring cycle. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 642648, Suzhou, China.
  45. 45Zalkow, F., Weiß, C., Prätzlich, T., Arifi-Müller, V., and Müller, M. (2017b). A multi-version approach for transferring measure annotations between music recordings. In Proceedings of the AES International Conference on Semantic Audio, pages 148155, Erlangen, Germany.
DOI: https://doi.org/10.5334/tismir.161 | Journal eISSN: 2514-3298
Language: English
Submitted on: Feb 25, 2023
Accepted on: May 17, 2023
Published on: Oct 25, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Christof Weiß, Vlora Arifi-Müller, Michael Krause, Frank Zalkow, Stephanie Klauk, Rainer Kleinertz, Meinard Müller, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.