References
- 1Aucouturier, J.-J. and Pachet, F. (2002). Music similarity measures: What’s the use? In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR), Paris, France.
- 2Bertin-Mahieux, T., Ellis, D. P. W., Whitman, B., and Lamere, P. (2011). The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami, USA.
- 3Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., and Shah, R. (1993). Signature verification using a “Siamese” time delay neural network. In Proceedings of the 6th International Conference on Neural Information Processing Systems (NIPS), San Francisco, USA. DOI: 10.1142/S0218001493000339
- 4Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and locally connected networks on graphs. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, Canada.
- 5Celma, Ò. and Serra, X. (2008). FOAFing the music: Bridging the semantic gap in music recommendation. Journal of Web Semantics, 6(4):250–256. DOI: 10.1016/j.websem.2008.09.004
- 6Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico.
- 7Doras, G., Yesiler, F., Serra, J., Gomez, E., and Peeters, G. (2020). Combining musical features for cover detection. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), Online.
- 8Dorfer, M., Arzt, A., and Widmer, G. (2017). Learning audio-sheet music correspondences for score identification and offline alignment. In Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China. DOI: 10.5334/tismir.12
- 9Eksombatchai, C., Jindal, P., Liu, J. Z., Liu, Y., Sharma, R., Sugnet, C., Ulrich, M., and Leskovec, J. (2018). Pixie: A system for recommending 3+ billion items to 200+ million users in real-time. In Proceedings of the 2018 World Wide Web Conference (WWW), Lyon, France. DOI: 10.1145/3178876.3186183
- 10Ellis, D. P. W., Whitman, B., Berenzweig, A., and Lawrence, S. (2002). The quest for ground truth in musical artist similarity. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), Paris, France.
- 11Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 855–864, New York, USA. DOI: 10.1145/2939672.2939754
- 12Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), Long Beach, USA.
- 13Hoffer, E. and Ailon, N. (2015).
Deep metric learning using triplet network . In Feragen, A., Pelillo, M., and Loog, M., editors, Similarity-Based Pattern Recognition (SIMBAD), Copenhagen, Denmark. DOI: 10.1007/978-3-319-24261-3_7 - 14Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(40):422–446. DOI: 10.1145/582415.582418
- 15Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, USA.
- 16Korzeniowski, F., Oramas, S., and Gouyon, F. (2021). Artist similarity with graph neural networks. In Proceedings of the 22nd International Society for Music Information Retrieval Conference (ISMIR), Online.
- 17Lee, J., Bryan, N. J., Salamon, J., Jin, Z., and Nam, J. (2020a). Disentangled multidimensional metric learning for music similarity. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain. DOI: 10.1109/ICASSP40776.2020.9053442
- 18Lee, J., Bryan, N. J., Salamon, J., Jin, Z., and Nam, J. (2020b). Metric learning vs classification for disentangled music representation learning. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), Online.
- 19Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France.
- 20Ma, J. and Yarats, D. (2021). On the adequacy of unturned warmup for adaptive optimization. In Proceedings of the 35th Conference on Artificial Intelligence (AAAI), Online. DOI: 10.1609/aaai.v35i10.17069
- 21McFee, B. and Lanckriet, G. R. G. (2009). Heterogeneous embedding for subjective artist similarity. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan.
- 22Oh, J., Cho, K., and Bruna, J. (2019). Advancing GraphSAGE with a data-driven node sampling. In Proceedings of the ICLR Workshop on Representation Learning on Graphs and Manifolds, New Orleans, USA.
- 23Oramas, S., Sordo, M., Espinosa-Anke, L., and Serra, X. (2015). A semantic-based approach for artist similarity. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), Malaga, Spain.
- 24Park, J., Lee, J., Park, J., Ha, J.-W., and Nam, J. (2018). Representation learning of music using artist labels. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France.
- 25Pohle, T., Schnitzer, D., Schedl, M., Knees, P., and Widmer, G. (2009). On rhythm and general music similarity. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan.
- 26Porter, A., Bogdanov, D., Kaye, R., Tsukanov, R., and Serra, X. (2015). AcousticBrainz: A community platform for gathering music information obtained from audio. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), Malaga, Spain.
- 27Salha-Galvan, G., Hennequin, R., Chapus, B., Tran, V.-A., and Vazirgiannis, M. (2021). Cold start similar artists ranking with gravity-inspired graph autoencoders. In Proceedings of the 15th ACM Conference on Recommender Systems (RECSYS), Amsterdam, Netherlands. DOI: 10.1145/3460231.3474252
- 28Schedl, M., Hauger, D., and Urbano, J. (2014). Harvesting microblogs for contextual music similarity estimation: A co-occurrence-based framework. Multimedia Systems, 20(6):693–705. DOI: 10.1007/s00530-013-0321-5
- 29Slaney, M., Weinberger, K. Q., and White, W. (2008). Learning a metric for music similarity. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR), Philadelphia, USA.
- 30Valcarce, D., Bellogín, A., Parapar, J., and Castells, P. (2018). On the robustness and discriminative power of information retrieval metrics for top-N recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems (RECSYS), Vancouver, Canada. DOI: 10.1145/3240323.3240347
- 31Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., and Wu, Y. (2014). Learning fine-grained image similarity with deep ranking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA. DOI: 10.1109/CVPR.2014.180
- 32Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P. (2017). Sampling matters in deep embedding learning. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy. DOI: 10.1109/ICCV.2017.309
- 33Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4–24. DOI: 10.1109/TNNLS.2020.2978386
- 34Yesiler, F., Serra, J., and Gomez, E. (2020). Accurate and scalable version identification using musicallymotivated embeddings. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain. DOI: 10.1109/ICASSP40776.2020.9053793
- 35Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining (SIGKDD), London, United Kingdom. DOI: 10.1145/3219819.3219890
