Have a personal or library account? Click to login
Artist Similarity for Everyone: A Graph Neural Network Approach Cover

Artist Similarity for Everyone: A Graph Neural Network Approach

Open Access
|Oct 2022

References

  1. 1Aucouturier, J.-J. and Pachet, F. (2002). Music similarity measures: What’s the use? In Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR), Paris, France.
  2. 2Bertin-Mahieux, T., Ellis, D. P. W., Whitman, B., and Lamere, P. (2011). The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR), Miami, USA.
  3. 3Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., and Shah, R. (1993). Signature verification using a “Siamese” time delay neural network. In Proceedings of the 6th International Conference on Neural Information Processing Systems (NIPS), San Francisco, USA. DOI: 10.1142/S0218001493000339
  4. 4Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and locally connected networks on graphs. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, Canada.
  5. 5Celma, Ò. and Serra, X. (2008). FOAFing the music: Bridging the semantic gap in music recommendation. Journal of Web Semantics, 6(4):250256. DOI: 10.1016/j.websem.2008.09.004
  6. 6Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep network learning by exponential linear units (ELUs). In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico.
  7. 7Doras, G., Yesiler, F., Serra, J., Gomez, E., and Peeters, G. (2020). Combining musical features for cover detection. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), Online.
  8. 8Dorfer, M., Arzt, A., and Widmer, G. (2017). Learning audio-sheet music correspondences for score identification and offline alignment. In Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China. DOI: 10.5334/tismir.12
  9. 9Eksombatchai, C., Jindal, P., Liu, J. Z., Liu, Y., Sharma, R., Sugnet, C., Ulrich, M., and Leskovec, J. (2018). Pixie: A system for recommending 3+ billion items to 200+ million users in real-time. In Proceedings of the 2018 World Wide Web Conference (WWW), Lyon, France. DOI: 10.1145/3178876.3186183
  10. 10Ellis, D. P. W., Whitman, B., Berenzweig, A., and Lawrence, S. (2002). The quest for ground truth in musical artist similarity. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), Paris, France.
  11. 11Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 855864, New York, USA. DOI: 10.1145/2939672.2939754
  12. 12Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), Long Beach, USA.
  13. 13Hoffer, E. and Ailon, N. (2015). Deep metric learning using triplet network. In Feragen, A., Pelillo, M., and Loog, M., editors, Similarity-Based Pattern Recognition (SIMBAD), Copenhagen, Denmark. DOI: 10.1007/978-3-319-24261-3_7
  14. 14Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems, 20(40):422446. DOI: 10.1145/582415.582418
  15. 15Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, USA.
  16. 16Korzeniowski, F., Oramas, S., and Gouyon, F. (2021). Artist similarity with graph neural networks. In Proceedings of the 22nd International Society for Music Information Retrieval Conference (ISMIR), Online.
  17. 17Lee, J., Bryan, N. J., Salamon, J., Jin, Z., and Nam, J. (2020a). Disentangled multidimensional metric learning for music similarity. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain. DOI: 10.1109/ICASSP40776.2020.9053442
  18. 18Lee, J., Bryan, N. J., Salamon, J., Jin, Z., and Nam, J. (2020b). Metric learning vs classification for disentangled music representation learning. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), Online.
  19. 19Loshchilov, I. and Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France.
  20. 20Ma, J. and Yarats, D. (2021). On the adequacy of unturned warmup for adaptive optimization. In Proceedings of the 35th Conference on Artificial Intelligence (AAAI), Online. DOI: 10.1609/aaai.v35i10.17069
  21. 21McFee, B. and Lanckriet, G. R. G. (2009). Heterogeneous embedding for subjective artist similarity. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan.
  22. 22Oh, J., Cho, K., and Bruna, J. (2019). Advancing GraphSAGE with a data-driven node sampling. In Proceedings of the ICLR Workshop on Representation Learning on Graphs and Manifolds, New Orleans, USA.
  23. 23Oramas, S., Sordo, M., Espinosa-Anke, L., and Serra, X. (2015). A semantic-based approach for artist similarity. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), Malaga, Spain.
  24. 24Park, J., Lee, J., Park, J., Ha, J.-W., and Nam, J. (2018). Representation learning of music using artist labels. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France.
  25. 25Pohle, T., Schnitzer, D., Schedl, M., Knees, P., and Widmer, G. (2009). On rhythm and general music similarity. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR), Kobe, Japan.
  26. 26Porter, A., Bogdanov, D., Kaye, R., Tsukanov, R., and Serra, X. (2015). AcousticBrainz: A community platform for gathering music information obtained from audio. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), Malaga, Spain.
  27. 27Salha-Galvan, G., Hennequin, R., Chapus, B., Tran, V.-A., and Vazirgiannis, M. (2021). Cold start similar artists ranking with gravity-inspired graph autoencoders. In Proceedings of the 15th ACM Conference on Recommender Systems (RECSYS), Amsterdam, Netherlands. DOI: 10.1145/3460231.3474252
  28. 28Schedl, M., Hauger, D., and Urbano, J. (2014). Harvesting microblogs for contextual music similarity estimation: A co-occurrence-based framework. Multimedia Systems, 20(6):693705. DOI: 10.1007/s00530-013-0321-5
  29. 29Slaney, M., Weinberger, K. Q., and White, W. (2008). Learning a metric for music similarity. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR), Philadelphia, USA.
  30. 30Valcarce, D., Bellogín, A., Parapar, J., and Castells, P. (2018). On the robustness and discriminative power of information retrieval metrics for top-N recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems (RECSYS), Vancouver, Canada. DOI: 10.1145/3240323.3240347
  31. 31Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., and Wu, Y. (2014). Learning fine-grained image similarity with deep ranking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA. DOI: 10.1109/CVPR.2014.180
  32. 32Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P. (2017). Sampling matters in deep embedding learning. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy. DOI: 10.1109/ICCV.2017.309
  33. 33Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):424. DOI: 10.1109/TNNLS.2020.2978386
  34. 34Yesiler, F., Serra, J., and Gomez, E. (2020). Accurate and scalable version identification using musicallymotivated embeddings. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain. DOI: 10.1109/ICASSP40776.2020.9053793
  35. 35Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining (SIGKDD), London, United Kingdom. DOI: 10.1145/3219819.3219890
DOI: https://doi.org/10.5334/tismir.143 | Journal eISSN: 2514-3298
Language: English
Submitted on: Jun 13, 2022
Accepted on: Sep 12, 2022
Published on: Oct 27, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Filip Korzeniowski, Sergio Oramas, Fabien Gouyon, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.