References
- 1Algorithm Watch. (2017). The ADM manifesto. Online, last accessed 20 June 2017,
https://algorithmwatch.org/en/the-adm-manifesto/ . - 2Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias: There’s software used across the country to predict future criminals. And it’s biased against blacks. Online, last accessed 27 June 2017,
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing . - 3Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209–227. DOI: 10.1007/s10676-013-9321-6
- 4Brown, M. F. (1998). Can culture be copyrighted? Current Anthropology, 39(2), 193–222. DOI: 10.1086/204721
- 5Bryson, J., & Winfield, A. (2017). Standardizing ethical design for artificial intelligence and autonomous systems. Computer, 50(5), 116–119. DOI: 10.1109/MC.2017.154
- 6Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183–186. DOI: 10.1126/science.aal4230
- 7Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4), 668–696. DOI: 10.1109/JPROC.2008.916370
- 8CCRMA. (2016). Music information retrieval. Online, last accessed 27 June 2017,
https://ccrma.stanford.edu/workshops/music-information-retrieval-2016 . - 9Celma, O. (2010).
Music recommendation . In: Music Recommendation and Discovery, 43–85. Springer. DOI: 10.1007/978-3-642-13287-2_3 - 10Coeckelbergh, M. (2015). Money Machines: Electronic Financial Technologies, Distancing, and Responsibility in Global Finance. Routledge.
- 11Coeckelbergh, M. (2017). Technology games: UsingWittgenstein for understanding and evaluating technology. Science and Engineering Ethics, 1–17. DOI: 10.1007/s11948-017-9953-8
- 12Colton, S., Llano, M. T., Hepworth, R., Charnley, J., Gale, C. V., Baron, A., Pachet, F., Roy, P., Gervas, P., Collins, N., Sturm, B., Weyde, T., Wolff, D., & Lloyd, J. R. (2016). The “Beyond the Fence” musical and “Computer Says Show” documentary. In: Seventh International Conference on Computational Creativity.
- 13Davies, M. E., Hamel, P., Yoshii, K., & Goto, M. (2014). Automashupper: Automatic creation of multi-song music mashups. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(12), 1726–1737.
- 14Demetriou, A., Larson, M., & Liem, C. (2016). Go with the flow: When listeners use music as technology. In: International Society for Music Information Retrieval Conference, 292–298.
- 15DeNora, T. (1999). Music as a technology of the self. Poetics, 27(1), 31–56. DOI: 10.1016/S0304-422X(99)00017-0
- 16de Valk, R., Volk, A., Holzapfel, A., Pikrakis, A., Kroher, N., & Six, J. (2017). MIRchiving: Challenges and opportunities of connecting MIR research and digital music archives. In: 4th International Workshop on Digital Libraries for Musicology, 25–28.
ACM . DOI: 10.1145/3144749.3144755 - 17Downie, J. S. (2003). Music information retrieval. Annual Review of Information Science and Technology, 37(1), 295–340. DOI: 10.1002/aris.1440370108
- 18Feld, S. (1996). Pygmy POP. A genealogy of schizophonic mimesis. Yearbook for Traditional Music, 28, 1–35. DOI: 10.2307/767805
- 19Floridi, L. (2008).
Foundations of information ethics . In: The Handbook of Information and Computer Ethics, chapter 1, 38–59. Wiley. DOI: 10.1002/9780470281819.ch1 - 20Friedman, B. (1996). Value-sensitive design. Interactions, 3(6), 16–23. DOI: 10.1145/242485.242493
- 21Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information Systems, 14(3), 330–347. DOI: 10.1145/230538.230561
- 22Goodman, B., & Flaxman, S. (2016). European union regulations on algorithmic decision-making and a ‘right to explanation’. arXiv preprint arXiv:1606.08813.
- 23Gotterbarn, D. (2004).
Informatics and professional responsibility . In: Bynum, T. W., & Rogerson, S. (Eds.), Computer Ethics and Professional Responsibility, 107–118. Blackwell. - 24Gunkel, D. J. (2016). Of Remixology: Ethics and Aesthetics after Remix. MIT Press.
- 25Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83. DOI: 10.1017/S0140525X0999152X
- 26Holzapfel, A., & Tzanetakis, G. (2014). Why is Greek music interesting? Towards an ethics of MIR. Tutorial presented at the International Society for Music Information Retrieval Conference.
- 27Huff, C. (2003).
Unintentional power in the design of computing systems . In: Computer Ethics and Professional Responsibility, chapter 4, 98–106. Blackwell. - 28Hughes, T. P. (1994).
Technological momentum . In: Smith, M. R. (Ed.), Does Technology Drive History? The Dilemma of Technological Determinism, 101–113. MIT Press, Cambridge, MA. - 29IEEE GIEAIS. (2017). Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems. Online, last accessed 20 June 2017,
https://ethicsinaction.ieee.org/ . The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. - 30Johnson, D. G. (2009). Computer Ethics. Pearson Education.
- 31Kaplinsky, R., & Morris, M. (2001). A Handbook for Value Chain Research. International Development Research Centre, Ottawa.
- 32Lee, J. H., & Cunningham, S. J. (2013). Toward an understanding of the history and impact of user studies in music information retrieval. Journal of Intelligent Information Systems, 41(3), 499–521. DOI: 10.1007/s10844-013-0259-2
- 33Li, Z., Xiang, Q., Hockman, J., Yang, J., Yi, Y., Fujinaga, I., & Wang, Y. (2010). A music search engine for therapeutic gait training. In: Proceedings of the 18th ACM International Conference on Multimedia, 627–630.
ACM . DOI: 10.1145/1873951.1874037 - 34Longino, H. E. (1990). Science as Social Knowledge: Values and Objectivity in Scientific Inquiry. Princeton University Press.
- 35Maccoby, M. (1976). The Gamesman: The New Corporate Leader. Simon and Schuster.
- 36Martin, M. W., & Schinzinger, R. (1996). Ethics in Engineering. McGraw-Hill.
- 37McFee, B., Nieto, O., & Bello, J. P. (2015). Hierarchical evaluation of segment boundary detection. In: International Society for Music Information Retrieval Conference, 406–412.
- 38Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2). DOI: 10.1177/2053951716679679
- 39Molino, J., Underwood, J., & Ayrey, C. (1990). Musical fact and the semiology of music. Music Analysis, 9(2), 105–156. DOI: 10.2307/854225
- 40Molnar, C. (2018). Interpretable machine learning: A guide for making black box models explainable. Online, last accessed 27 June 2017,
https://christophm.github.io/interpretable-ml-book/ . - 41Moor, J. H. (1985). What is computer ethics? Metaphilosophy, 16(4), 266–275. DOI: 10.1111/j.1467-9973.1985.tb00173.x
- 42Moor, J. H. (2003).
Reason, relativity, and responsibility in computer ethics . In: Computer Ethics and Professional Responsibility, chapter 1, 21–38. Blackwell. - 43Nattiez, J.-J. (1990). Music and Discourse: Toward a Semiology of Music. Princeton University Press.
- 44North, A., & Hargreaves, D. (2008). The Social and Applied Psychology of Music. Oxford University Press. DOI: 10.1093/acprof:oso/9780198567424.001.0001
- 45Orio, N. (2006). Music retrieval: A tutorial and review. Foundations and Trends in Information Retrieval, 1(1), 1–90. DOI: 10.1561/1500000002
- 46Resnik, D. B. (2015). What is ethics in research & why is it important? Online, last accessed 20 June 2017,
https://www.niehs.nih.gov/research/resources/bioethics/whatis/ . - 47Schlüter, J., & Sonnleitner, R. (2012). Unsupervised feature learning for speech and music detection in radio broadcasts. In: Proceedings of the 15th International Conference on Digital Audio Effects.
- 48Seeger, A. (2003). I found it, how can i use it? Dealing with the ethical and legal constraints of information access. In: International Society for Music Information Retrieval Conference.
- 49Serra, X., Magas, M., Benetos, E., Chudy, M., Dixon, S., Flexer, A., Gómez, E., Gouyon, F., Herrera, P., Jorda, S., Paytuvi, O., Peeters, G., Schlüter, J., Vinet, H., & Widmer, G. (2013). Roadmap for music information research. Online, last accessed 5 September 2018,
http://mires.eecs.qmul.ac.uk/files/MIRES_Roadmap_ver_1.0.0.pdf . - 50Sinnreich, A., Latonero, M., & Gluck, M. (2009). Ethics reconfigured: How today’s media consumers evaluate the role of creative reappropriation. Information, Communication & Society, 12(8), 1242–1260. DOI: 10.1080/13691180902890117
- 51Slobin, M. (1992). Micromusics of the west: A comparative approach. Ethnomusicology, 36(1), 1–87. DOI: 10.2307/852085
- 52Sturm, B. L. (2006). Concatenative sound synthesis and intellectual property: An analysis of the legal issues surrounding the synthesis of novel sounds from copyright-protected work. Journal of New Music Research, 35(1), 23–33. DOI: 10.1080/09298210600696691
- 53Sturm, B. L. (2014). The state of the art ten years after a state of the art: Future research in music information retrieval. Journal of New Music Research, 43(2), 147–172. DOI: 10.1080/09298215.2014.894533
- 54Sturm, B. L. (2016). Revisiting priorities: Improving MIR evaluation practices. In: International Society for Music Information Retrieval Conference, 488–494.
- 55Sturm, B. L., Bardeli, R., Langlois, T., & Emiya, V. (2014). Formalizing the problem of music description. In: International Society for Music Information Retrieval Conference.
- 56Wagstaff, K. L. (2012). Machine learning that matters. In: International Conference for Machine Learning, 529–536.
- 57Wallis, R., & Malm, K. (1984). Big Sounds from Small Peoples: The Music Industry in Small Countries, volume 2. Pendragon Press.
- 58Winner, L. (1980). Do artifacts have politics? Daedalus, 109(1), 121–136.
