Have a personal or library account? Click to login
Repertoire-Specific Vocal Pitch Data Generation for Improved Melodic Analysis of Carnatic Music Cover

Repertoire-Specific Vocal Pitch Data Generation for Improved Melodic Analysis of Carnatic Music

Open Access
|Jun 2023

Figures & Tables

tismir-6-1-137-g1.png
Figure 1

Block diagram of the data generation pipeline for a particular Saraga recording. We also indicate in which sections in this paper each building block is presented.

Table 1

Specification comparison between our SCMS and different state-of-the-art-melody datasets (Goto et al., 2002)*, (LabROSA, 2005), (Hsu and Jang, 2010), (Bittner et al., 2014), (Salamon et al., 2017). Table inspired by a similar comparison by Bittner et al. (2014).

DATASETCONSIDERED GENRESLENGTH% VOCALNO. SAMPLESSAMPLE LENGTHAVAILABLE AUDIO?
MedleyDB V1Rock, pop, jazz, rap⋍447 min57%108∼20–600 secUpon request
MedleyDB V2Rock, pop, jazz, rap⋍750 min57%196∼20–600 secUpon request
MDB-mel-synthRock, pop, jazz, rap⋍190 min64%65∼20–600 secYes
MIR1KChinese pop⋍113 min100%1000∼4–13 secYes
RWC*Japanese & US pop⋍407 min100%100∼240 secNo
ADC2004Rock, pop, opera⋍10 min60%20∼30 secYes
MIREX05Rock, pop⋍6 min80%12∼30 secYes
MIREX09Chinese pop⋍167 min100%374∼20–40 secNo
INDIAN08Hindustani Music⋍8 min100%8∼60 secNo
SCMSCarnatic Music1235 min100%246030 secYes
Table 4

Comparison of different pitch extraction methods for melodic pattern discovery.

PITCH TRACKSTEMCOVERAGE (%)PRECISIONRECALLF1NO. PATTERNSNO. GROUPSΦ
MelodiaMix69.00.3230.2970.310164212.7
Melodia-SMix71.40.3410.3710.356170202.8
FTA-WMix74.80.2500.0070.113422.9
FTA-CMix80.30.3960.6550.494283662.2
MelodiaVocal76.00.5140.5740.542181481.0
Melodia-SVocal75.30.5230.5740.547197501.0
FTA-WVocal75.30.3950.1550.22343202.9
FTA-CVocal78.00.4850.6690.562227492.4
Table 2

Performance comparison between FTA-Net trained using the SCMS (FTA-C) and MDB-synth (FTA-W). Results presented as percentages (%).

MELODY EXTRACTION METRICS
VRVFARPARCAOA
↓TEST SET/MODEL →FTA-CFTA-WFTA-CFTA-WFTA-CFTA-WFTA-CFTA-WFTA-CFTA-W
SCMS (test)96.3583.268.3831.4390.1769.3090.4670.6290.9967.72
SHMS91.2580.1817.0417.5378.9668.7681.7870.2081.3973.84
MIREX0586.7489.2121.4019.2368.1173.9469.6874.1872.4476.66
ADC200477.2587.7929.1727.9464.0177.9866.6279.9864.4677.32
Table 3

Performance comparison between FTA-Net trained using the SCMS (FTA-C) and Melodia (Salamon and Gomez, 2012). Results presented as percentages (%).

MELODY EXTRACTION METRICS
VRVFARPARCAOA
MODEL → ↓ TEST SETFTA-CMELODIAFTA-CMELODIAFTA-CMELODIAFTA-CMELODIAFTA-CMELODIA
SCMS (test)96.3585.758.3817.1790.1777.5190.4679.8190.9977.07
tismir-6-1-137-g2.png
Figure 2

Four different example patterns identified by FTA-C but disregarded by Melodia-S (pitch extraction run on the mixture audio).

tismir-6-1-137-g3.png
Figure 3

4 occurrences of motif 39 retrieved using FTA-C on the mixed recording. The dashed and solid lines refer to two distinct variations of the same underlying melodic pattern.

DOI: https://doi.org/10.5334/tismir.137 | Journal eISSN: 2514-3298
Language: English
Submitted on: Apr 5, 2022
Accepted on: Mar 11, 2023
Published on: Jun 26, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Genís Plaja-Roglans, Thomas Nuttall, Lara Pearson, Xavier Serra, Marius Miron, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.