Have a personal or library account? Click to login
JSD: A Dataset for Structure Analysis in Jazz Music Cover

References

  1. 1Abeßer, J., Frieler, K., Cano, E., Pfleiderer, M., and Zaddach, W. (2017). Score-informed analysis of tuning, intonation, pitch modulation, and dynamics in jazz solos. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(1):168177. DOI: 10.1109/TASLP.2016.2627186
  2. 2Aucouturier, J.-J. and Pachet, F. (2004). Improving timbre similarity: How high’s the sky. Journal of Negative Results in Speech and Audio Sciences, 1.
  3. 3Balke, S., Dittmar, C., Abeßer, J., Frieler, K., Pfleiderer, M., and Müller, M. (2018). Bridging the gap: Enriching YouTube videos with jazz music annotations. Frontiers in Digital Humanities, 5. DOI: 10.3389/fdigh.2018.00001
  4. 4Balke, S., Dittmar, C., Abeßer, J., and Müller, M. (2017). Data-driven solo voice enhancement for jazz music retrieval. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 196200, New Orleans, Louisiana, USA. DOI: 10.1109/ICASSP.2017.7952145
  5. 5Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Cannam, C., and Bello, J. P. (2014). MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 155160, Taipei, Taiwan.
  6. 6Böck, S., Krebs, F., and Schedl, M. (2012). Evaluating the online capabilities of onset detection methods. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 4954.
  7. 7Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123140. DOI: 10.1007/BF00058655
  8. 8Dannenberg, R. B. and Goto, M. (2008). Music structure analysis from acoustic signals. In Havelock, D., Kuwano, S., and Vorländer, M., editors, Handbook of Signal Processing in Acoustics, volume 1, pages 305331. Springer, New York, NY, USA. DOI: 10.1007/978-0-387-30441-0_21
  9. 9Davis, S. B. and Mermelstein, P. (1990). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. Readings in Speech Recognition, pages 6574. DOI: 10.1016/B978-0-08-051584-7.50010-3
  10. 10Dittmar, C., Pfleiderer, M., Balke, S., and Müller, M. (2018). A swingogram representation for tracking micro-rhythmic variation in jazz performances. Journal of New Music Research, 47(2):97113. DOI: 10.1080/09298215.2017.1367405
  11. 11Eremenko, V., Demirel, E., Bozkurt, B., and Serra, X. (2018). Audio-aligned jazz harmony dataset for automatic chord transcription and corpus-based research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 483490.
  12. 12Flexer, A. (2014). On inter-rater agreement in audio music similarity. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 245250, Taipei, Taiwan.
  13. 13Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pages 452455, New York, NY, USA. DOI: 10.1109/ICME.2000.869637
  14. 14Frieler, K., Pfleiderer, M., Zaddach, W.-G., and Abeßer, J. (2016). Midlevel analysis of monophonic jazz solos: A new approach to the study of improvisation. Musicae Scientiae, 20(2):143162. DOI: 10.1177/1029864916636440
  15. 15Gómez, J. S., Abeßer, J., and Cano, E. (2018). Jazz solo instrument classification with convolutional neural networks, source separation, and transfer learning. In Gómez, E., Hu, X., Humphrey, E., and Benetos, E., editors, Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 577584.
  16. 16Goto, M. (2006). AIST annotation for the RWC music database. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 359360.
  17. 17Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002). RWC music database: Popular, classical and jazz music databases. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 287288, Paris, France.
  18. 18Gouyon, F., Dixon, S., Pampalk, E., and Widmer, G. (2004). Evaluating rhythmic descriptors for musical genre classification. In Proceedings of the Audio Engineering Society (AES) International Conference, London, UK.
  19. 19Grill, T. and Schlüter, J. (2015). Music boundary detection using neural networks on combined features and two-level annotations. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 531537, Malaga, Spain. DOI: 10.1109/EUSIPCO.2015.7362593
  20. 20Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585:357362. DOI: 10.1038/s41586-020-2649-2
  21. 21Harte, C., Sandler, M. B., Abdallah, S., and Gómez, E. (2005). Symbolic representation of musical chords: A proposed syntax for text annotations. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 6671, London, UK.
  22. 22Kroher, N., Díaz-Báñez, J. M., Mora, J., and Gómez, E. (2016). Corpus COFLA: A research corpus for the computational study of flamenco music. Journal on Computing and Cultural Heritage (JOCCH), 9(2):10:110:21. DOI: 10.1145/2875428
  23. 23McFee, B., Kim, J. W., Cartwright, M., Salamon, J., Bittner, R. M., and Bello, J. P. (2019). Open-source practices for music signal processing research: Recommendations for transparent, sustainable, and reproducible audio research. IEEE Signal Processing Magazine, 36(1):128137. DOI: 10.1109/MSP.2018.2875349
  24. 24McFee, B. and Kinnaird, K. (2019). Improving structure evaluation through automatic hierarchy expansion. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands.
  25. 25McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., and Nieto, O. (2015). Librosa: Audio and music signal analysis in Python. In Proceedings the Python Science Conference, pages 1825, Austin, Texas, USA. DOI: 10.25080/Majora-7b98e3ed-003
  26. 26Müller, M. (2015). Fundamentals of Music Processing. Springer Verlag. DOI: 10.1007/978-3-319-21945-5
  27. 27Nieto, O., Farbood, M., Jehan, T., and Bello, J. P. (2014). Perceptual analysis of the F-measure to evaluate section boundaries in music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 265270, Taipei, Taiwan.
  28. 28Nieto, O., Mysore, G. J., Wang, C., Smith, J. B. L., Schlüter, J., Grill, T., and McFee, B. (2020). Audiobased music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):246263. DOI: 10.5334/tismir.54
  29. 29Paulus, J., Müller, M., and Klapuri, A. (2010). Audiobased music structure analysis. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 625636, Utrecht, The Netherlands.
  30. 30Peeters, G. (2007). Sequence representation of music structure using higher-order similarity matrix and maximum-likelihood approach. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 3540, Vienna, Austria.
  31. 31Pfleiderer, M., Frieler, K., Abeßer, J., Zaddach, W.- G., and Burkhart, B. (2017). Inside the Jazzomat. Schott Campus, Mainz, Germany.
  32. 32Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., and Ellis, D. P. W. (2014). MIR_EVAL: A transparent implementation of common MIR metrics. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 367372, Taipei, Taiwan.
  33. 33Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi-Müller, V., and Müller, M. (2020). Erkomaishvili Dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):3141. DOI: 10.5334/tismir.44
  34. 34Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio, London, UK.
  35. 35Sikora, F. (2019). Jazz Harmony: Think - Listen - Play - A Practical Approach. Schott.
  36. 36Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., Roure, D. D., and Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 555560, Miami, Florida, USA.
  37. 37Terasawa, H., Slaney, M., and Berger, J. (2005). The thirteen colors of timbre. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 323326. DOI: 10.1109/ASPAA.2005.1540234
  38. 38Ullrich, K., Schluter, J., and Grill, T. (2014). Boundary detection in music structure analysis using convolutional neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 417422, Taipei, Taiwan.
  39. 39van Kranenburg, P., de Bruin, M., and Volk, A. (2019). Documenting a song culture: The Dutch Song Database as a resource for musicological research. International Journal on Digital Libraries, 20(1):1323. DOI: 10.1007/s00799-017-0228-4
  40. 40Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NeurIPS), pages 59986008, Long Beach, CA, USA.
  41. 41Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ˙I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, İ., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261272. DOI: 10.1038/s41592-020-0772-5
  42. 42Weiß, C., Balke, S., Abeßer, J., and Müller, M. (2018). Computational corpus analysis: A case study on jazz solos. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), pages 416423, Paris, France.
  43. 43Werner, N., Balke, S., Stöter, F.-R., Müller, M., and Edler, B. (2017). trackswitch.js: A versatile webbased audio player for presenting scientific results. In Proceedings of the Web Audio Conference (WAC), London, UK.
DOI: https://doi.org/10.5334/tismir.131 | Journal eISSN: 2514-3298
Language: English
Submitted on: Mar 6, 2022
Accepted on: Jun 28, 2022
Published on: Nov 7, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Stefan Balke, Julian Reck, Christof Weiß, Jakob Abeßer, Meinard Müller, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.