References
- 1Abeßer, J., Frieler, K., Cano, E., Pfleiderer, M., and Zaddach, W. (2017). Score-informed analysis of tuning, intonation, pitch modulation, and dynamics in jazz solos. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(1):168–177. DOI: 10.1109/TASLP.2016.2627186
- 2Aucouturier, J.-J. and Pachet, F. (2004). Improving timbre similarity: How high’s the sky. Journal of Negative Results in Speech and Audio Sciences, 1.
- 3Balke, S., Dittmar, C., Abeßer, J., Frieler, K., Pfleiderer, M., and Müller, M. (2018). Bridging the gap: Enriching YouTube videos with jazz music annotations. Frontiers in Digital Humanities, 5. DOI: 10.3389/fdigh.2018.00001
- 4Balke, S., Dittmar, C., Abeßer, J., and Müller, M. (2017).
Data-driven solo voice enhancement for jazz music retrieval . In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 196–200, New Orleans, Louisiana, USA. DOI: 10.1109/ICASSP.2017.7952145 - 5Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Cannam, C., and Bello, J. P. (2014).
MedleyDB: A multitrack dataset for annotation-intensive MIR research . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 155–160, Taipei, Taiwan. - 6Böck, S., Krebs, F., and Schedl, M. (2012). Evaluating the online capabilities of onset detection methods. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 49–54.
- 7Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140. DOI: 10.1007/BF00058655
- 8Dannenberg, R. B. and Goto, M. (2008).
Music structure analysis from acoustic signals . In Havelock, D., Kuwano, S., and Vorländer, M., editors, Handbook of Signal Processing in Acoustics, volume 1, pages 305–331. Springer, New York, NY, USA. DOI: 10.1007/978-0-387-30441-0_21 - 9Davis, S. B. and Mermelstein, P. (1990). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. Readings in Speech Recognition, pages 65–74. DOI: 10.1016/B978-0-08-051584-7.50010-3
- 10Dittmar, C., Pfleiderer, M., Balke, S., and Müller, M. (2018). A swingogram representation for tracking micro-rhythmic variation in jazz performances. Journal of New Music Research, 47(2):97–113. DOI: 10.1080/09298215.2017.1367405
- 11Eremenko, V., Demirel, E., Bozkurt, B., and Serra, X. (2018). Audio-aligned jazz harmony dataset for automatic chord transcription and corpus-based research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 483–490.
- 12Flexer, A. (2014).
On inter-rater agreement in audio music similarity . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 245–250, Taipei, Taiwan. - 13Foote, J. (2000).
Automatic audio segmentation using a measure of audio novelty . In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pages 452–455, New York, NY, USA. DOI: 10.1109/ICME.2000.869637 - 14Frieler, K., Pfleiderer, M., Zaddach, W.-G., and Abeßer, J. (2016). Midlevel analysis of monophonic jazz solos: A new approach to the study of improvisation. Musicae Scientiae, 20(2):143–162. DOI: 10.1177/1029864916636440
- 15Gómez, J. S., Abeßer, J., and Cano, E. (2018). Jazz solo instrument classification with convolutional neural networks, source separation, and transfer learning. In Gómez, E., Hu, X., Humphrey, E., and Benetos, E., editors, Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 577–584.
- 16Goto, M. (2006). AIST annotation for the RWC music database. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 359–360.
- 17Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002).
RWC music database: Popular, classical and jazz music databases . In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 287–288, Paris, France. - 18Gouyon, F., Dixon, S., Pampalk, E., and Widmer, G. (2004).
Evaluating rhythmic descriptors for musical genre classification . In Proceedings of the Audio Engineering Society (AES) International Conference, London, UK. - 19Grill, T. and Schlüter, J. (2015).
Music boundary detection using neural networks on combined features and two-level annotations . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 531–537, Malaga, Spain. DOI: 10.1109/EUSIPCO.2015.7362593 - 20Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585:357–362. DOI: 10.1038/s41586-020-2649-2
- 21Harte, C., Sandler, M. B., Abdallah, S., and Gómez, E. (2005).
Symbolic representation of musical chords: A proposed syntax for text annotations . In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 66–71, London, UK. - 22Kroher, N., Díaz-Báñez, J. M., Mora, J., and Gómez, E. (2016). Corpus COFLA: A research corpus for the computational study of flamenco music. Journal on Computing and Cultural Heritage (JOCCH), 9(2):10:1–10:21. DOI: 10.1145/2875428
- 23McFee, B., Kim, J. W., Cartwright, M., Salamon, J., Bittner, R. M., and Bello, J. P. (2019). Open-source practices for music signal processing research: Recommendations for transparent, sustainable, and reproducible audio research. IEEE Signal Processing Magazine, 36(1):128–137. DOI: 10.1109/MSP.2018.2875349
- 24McFee, B. and Kinnaird, K. (2019).
Improving structure evaluation through automatic hierarchy expansion . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands. - 25McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., and Nieto, O. (2015).
Librosa: Audio and music signal analysis in Python . In Proceedings the Python Science Conference, pages 18–25, Austin, Texas, USA. DOI: 10.25080/Majora-7b98e3ed-003 - 26Müller, M. (2015). Fundamentals of Music Processing. Springer Verlag. DOI: 10.1007/978-3-319-21945-5
- 27Nieto, O., Farbood, M., Jehan, T., and Bello, J. P. (2014).
Perceptual analysis of the F-measure to evaluate section boundaries in music . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 265–270, Taipei, Taiwan. - 28Nieto, O., Mysore, G. J., Wang, C., Smith, J. B. L., Schlüter, J., Grill, T., and McFee, B. (2020). Audiobased music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):246–263. DOI: 10.5334/tismir.54
- 29Paulus, J., Müller, M., and Klapuri, A. (2010).
Audiobased music structure analysis . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 625–636, Utrecht, The Netherlands. - 30Peeters, G. (2007).
Sequence representation of music structure using higher-order similarity matrix and maximum-likelihood approach . In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 35–40, Vienna, Austria. - 31Pfleiderer, M., Frieler, K., Abeßer, J., Zaddach, W.- G., and Burkhart, B. (2017). Inside the Jazzomat. Schott Campus, Mainz, Germany.
- 32Raffel, C., McFee, B., Humphrey, E. J., Salamon, J., Nieto, O., Liang, D., and Ellis, D. P. W. (2014).
MIR_EVAL: A transparent implementation of common MIR metrics . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 367–372, Taipei, Taiwan. - 33Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi-Müller, V., and Müller, M. (2020). Erkomaishvili Dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1):31–41. DOI: 10.5334/tismir.44
- 34Serra, X. (2014).
Creating research corpora for the computational study of music: The case of the CompMusic project . In Proceedings of the AES International Conference on Semantic Audio, London, UK. - 35Sikora, F. (2019). Jazz Harmony: Think - Listen - Play - A Practical Approach. Schott.
- 36Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., Roure, D. D., and Downie, J. S. (2011).
Design and creation of a large-scale database of structural annotations . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 555–560, Miami, Florida, USA. - 37Terasawa, H., Slaney, M., and Berger, J. (2005). The thirteen colors of timbre. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pages 323–326. DOI: 10.1109/ASPAA.2005.1540234
- 38Ullrich, K., Schluter, J., and Grill, T. (2014).
Boundary detection in music structure analysis using convolutional neural networks . In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 417–422, Taipei, Taiwan. - 39van Kranenburg, P., de Bruin, M., and Volk, A. (2019). Documenting a song culture: The Dutch Song Database as a resource for musicological research. International Journal on Digital Libraries, 20(1):13–23. DOI: 10.1007/s00799-017-0228-4
- 40Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need . In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (NeurIPS), pages 5998–6008, Long Beach, CA, USA. - 41Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ˙I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, İ., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272. DOI: 10.1038/s41592-020-0772-5
- 42Weiß, C., Balke, S., Abeßer, J., and Müller, M. (2018).
Computational corpus analysis: A case study on jazz solos . In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), pages 416–423, Paris, France. - 43Werner, N., Balke, S., Stöter, F.-R., Müller, M., and Edler, B. (2017).
trackswitch.js: A versatile webbased audio player for presenting scientific results . In Proceedings of the Web Audio Conference (WAC), London, UK.
