References
- Aiello, L. M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., & Menczer, F. (2012). Friendship prediction and homophily in social media. ACM Transactions on the Web, 6(2). DOI: 10.1145/2180861.2180866
- Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195. DOI: 10.1016/j.jesp.2017.09.004
- Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. (2019). Raincloud plots: a multi-platform tool for robust data visualization [version 1; peer review: 2 approved]. Wellcome Open Res, 4(63). DOI: 10.12688/wellcomeopenres.15191.1
- Altman, D. G., & Bland, J. M. (1999). Treatment allocation in controlled trials: why randomise? BMJ, 318(7192), 1209–1209. DOI: 10.1136/bmj.318.7192.1209
- Anwyl-Irvine, A. L., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. (2021). Realistic precision and accuracy of online experiment platforms, web browsers, and devices. Behavior Research Methods, 53(4), 1407–1425. DOI: 10.3758/s13428-020-01501-5
- Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–407. DOI: 10.3758/s13428-019-01237-x
- Artner, R., Verliefde, T., Steegen, S., Gomes, S., Traets, F., Tuerlinckx, F., & Vanpaemel, W. (2020). The reproducibility of statistical results in psychological research: An investigation using unpublished raw data. Psychological Methods, 26(5), 527–546. DOI: 10.1037/met0000365
- Baker, M., & Penny, D. (2016). Is there a reproducibility crisis in science? Nature, 452–454. DOI: 10.1038/d41586-019-00067-3
- Bartels, C., Wegrzyn, M., Wiedl, A., Ackermann, V., & Ehrenreich, H. (2010). Practice effects in healthy adults: A longitudinal study on frequent repetitive cognitive testing. BMC Neuroscience, 11. DOI: 10.1186/1471-2202-11-118
- Benedict, R. H. B., & Zgaljardic, D. J. (1998). Practice effects during repeated administrations of memory tests with and without alternate forms. Journal of Clinical and Experimental Neuropsychology, 20(3), 339–352. DOI: 10.1076/jcen.20.3.339.822
- Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for experimental research: Amazon.com’s mechanical turk. Political Analysis, 20(3), 351–368. DOI: 10.1093/pan/mpr057
- Beyer, R. M., Manica, A., & Mora, C. (2021). Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Science of the Total Environment, 767,
145413 . DOI: 10.1016/j.scitotenv.2021.145413 - Bieniek, M. M., Bennett, P. J., Sekuler, A. B., & Rousselet, G. A. (2016). A robust and representative lower bound on object processing speed in humans. European Journal of Neuroscience, 44(2), 1804–1814. DOI: 10.1111/ejn.13100
- Blythe, H. I., Kirkby, J. A., & Liversedge, S. P. (2018). Comments on: “What is developmental dyslexia?” brain sci. 2018, 8, 26. the relationship between eye movements and reading difficulties. Brain Sciences, 8(6). DOI: 10.3390/brainsci8060100
- Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study: Comparing a range of experiment generators, both lab-based and online. PeerJ, 8(e9414). DOI: 10.7717/peerj.9414
- Brouillard, M., & Byers-Heinlein, K. (2019a). Recruiting hard-to-find participants using Facebook sponsored posts. DOI: 10.17605/OSF.IO/9BCKN
- Brouillard, M., & Byers-Heinlein, K. (2019b). Recruiting infant participants using Facebook sponsored posts. DOI: 10.17605/OSF.IO/9BCKN
- Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. DOI: 10.1038/nrn3475
- Calamia, M., Markon, K., & Tranel, D. (2012). Scoring higher the second time around: Meta-analyses of practice effects in neuropsychological assessment. Clinical Neuropsychologist, 26(4), 543–570. DOI: 10.1080/13854046.2012.680913
- Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T. H., Huber, J., Johannesson, M., Kirchler, M., Nave, G., Nosek, B. A., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, T., Chen, Y., Forsell, E., Gampa, A., Heikensten, E., Hummer, L., Imai, T., … Wu, H. (2018). Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behaviour, 2(9), 637–644. DOI: 10.1038/s41562-018-0399-z
- Carter, W. L. (2021). ScreenScale. DOI: 10.17605/OSF.IO/8FHQK
- Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and data gathered via Amazon’s MTurk, social media, and face-to-face behavioral testing. Computers in Human Behavior, 29(6), 2156–2160. DOI: 10.1016/j.chb.2013.05.009
- Chandler, J. J., Mueller, P., & Paolacci, G. (2014). Nonnaïveté among Amazon Mechanical Turk workers: Consequences and solutions for behavioral researchers. Behavior Research Methods, 46(1), 112–130. DOI: 10.3758/s13428-013-0365-7
- Chandler, J. J., & Paolacci, G. (2017). Lie for a Dime: When Most Prescreening Responses Are Honest but Most Study Participants Are Impostors. Social Psychological and Personality Science, 8(5), 500–508. DOI: 10.1177/1948550617698203
- Chouinard, B., Scott, K., & Cusack, R. (2019). Using automatic face analysis to score infant behaviour from video collected online. Infant Behavior and Development, 54, 1–12. DOI: 10.1016/j.infbeh.2018.11.004
- Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical Turk as a Tool for Experimental Behavioral Research. PLoS ONE, 8(3). DOI: 10.1371/journal.pone.0057410
- de Leeuw, J. R., & Motz, B. A. (2016). Psychophysics in a Web browser? Comparing response times collected with JavaScript and Psychophysics Toolbox in a visual search task. Behavior Research Methods, 48(1), 1–12. DOI: 10.3758/s13428-015-0567-2
- DeBruine, L. M., & Barr, D. J. (2021). Understanding Mixed-Effects Models Through Data Simulation. Advances in Methods and Practices in Psychological Science, 4(1). DOI: 10.1177/2515245920965119
- DePuy, V., & Berger, V. W. (2014). Counterbalancing. Wiley StatRef: Statistics Reference Online. DOI: 10.1002/9781118445112.stat06195
- Downs, J. S., Holbrook, M. B., Sheng, S., & Cranor, L. F. (2010). Are your participants gaming the system? Screening mechanical Turk workers. Conference on Human Factors in Computing Systems – Proceedings, 4, 2399–2402. DOI: 10.1145/1753326.1753688
- Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1), 1–26. DOI: 10.1214/aos/1176344552
- Ettinger, U., Meyhöfer, I., Steffens, M., Wagner, M., & Koutsouleris, N. (2014). Genetics, Cognition, and Neurobiology of Schizotypal Personality: A Review of the Overlap with Schizophrenia. Frontiers in Psychiatry, 5, 1–16. DOI: 10.3389/fpsyt.2014.00018
- Etz, A., & Vandekerckhove, J. (2016). A Bayesian perspective on the reproducibility project: Psychology. PLoS ONE, 11(2), 1–12. DOI: 10.1371/journal.pone.0149794
- Faul, F., Erdefelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Journal of Materials and Environmental Science, 39(2), 175–191. DOI: 10.3758/BF03193146
- Field, A. P., & Wilcox, R. R. (2017). Robust statistical methods: A primer for clinical psychology and experimental psychopathology researchers. Behaviour Research and Therapy, 98, 19–38. DOI: 10.1016/j.brat.2017.05.013
- Forscher, P., Wagenmakers, E.-J., Coles, N. A., Silan, M. A., Dutra, N. B., Basnight-Brown, D., & IJzerman, H. (2021). A Manifesto for Big Team Science.
- Foster, E. D., & Deardorff, A. (2017). Open Science Framework (OSF). Journal of the Medical Library Association, 105(2). DOI: 10.5195/jmla.2017.88
- Franzen, L. (2018). Neural and visual correlates of perceptual decision making in adult dyslexia (Issue December) [University of Glasgow].
https://theses.gla.ac.uk/71950/ - Franzen, L., Delis, I., Sousa, G. De, Kayser, C., & Philiastides, M. G. (2020). Auditory information enhances post-sensory visual evidence during rapid multisensory decision-making. Nature Communications, 11, 5440. DOI: 10.1038/s41467-020-19306-7
- Franzen, L., Gagné, N., Johnson, A. P., & Grohmann, B. (2022). Behavioral markers of visuo-spatial working memory load in adult dyslexia. Open Science Framework. DOI: 10.17605/OSF.IO/DYN5T
- Franzen, L., Stark, Z., & Johnson, A. P. (2021). Individuals with dyslexia use a different visual sampling strategy to read text. Scientific Reports, 11, 6449. DOI: 10.1038/s41598-021-84945-9
- Gallant, J., & Libben, G. (2019). No lab, no problem: Designing lexical comprehension and production experiments using PsychoPy3. The Mental Lexicon, 14(1), 152–168. DOI: 10.1075/ml.00002.gal
- GazeRecorder. (2021). Gaze flow.
https://gazerecorder.com/gazeflow/ - Giakoumaki, S. G. (2012). Cognitive and prepulse inhibition deficits in psychometrically high schizotypal subjects in the general population: Relevance to schizophrenia research. Journal of the International Neuropsychological Society, 18(4), 643–656. DOI: 10.1017/S135561771200029X
- Gillan, C. M., & Daw, N. D. (2016). Taking Psychiatry Research Online. Neuron, 91(1), 19–23. DOI: 10.1016/j.neuron.2016.06.002
- Gilmore, R. O., Kennedy, J. L., & Adolph, K. E. (2018). Practical Solutions for Sharing Data and Materials From Psychological Research. Advances in Methods and Practices in Psychological Science, 1(1), 121–130. DOI: 10.1177/2515245917746500
- Goodman, J. K., Cryder, C. E., & Cheema, A. (2013). Data Collection in a Flat World: The Strengths and Weaknesses of Mechanical Turk Samples. Journal of Behavioral Decision Making, 26(3), 213–224. DOI: 10.1002/bdm.1753
- Gorilla Team. (2021). Gorilla Screen Calibration.
https://support.gorilla.sc/support/reference/task-builder-zones#eyetracking - Grootswagers, T. (2020). A primer on running human behavioural experiments online. Behavior Research Methods, 52(6), 2283–2286. DOI: 10.3758/s13428-020-01395-3
- Hauser, D. J., & Schwarz, N. (2016). Attentive Turkers: MTurk participants perform better on online attention checks than do subject pool participants. Behavior Research Methods, 48(1), 400–407. DOI: 10.3758/s13428-015-0578-z
- Henderson, P. W., & Cote, J. A. (1998). Guidelines for selecting or modifying logos. Journal of Marketing, 62(2), 14–30. DOI: 10.1177/002224299806200202
- Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83. DOI: 10.1017/S0140525X0999152X
- Holcombe, A. (2020). The reproducibility crisis.
https://osf.io/r4wpt - Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8),
e124 . DOI: 10.1371/journal.pmed.0020124 - Ioannidis, J. P. A. (2008). Why most discovered true associations are inflated. Epidemiology, 19(5), 640–648. DOI: 10.1097/EDE.0b013e31818131e7
- Ioannidis, J. P. A., Munafò, M. R., Fusar-Poli, P., Nosek, B. A., & David, S. P. (2014). Publication and other reporting biases in cognitive sciences: Detection, prevalence, and prevention. Trends in Cognitive Sciences, 18(5), 235–241. DOI: 10.1016/j.tics.2014.02.010
- John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling. Psychological Science, 23(5), 524–532. DOI: 10.1177/0956797611430953
- Jun, E., Hsieh, G., & Reinecke, K. (2017). Types of motivation affect study selection, attention, and dropouts in online experiments. Proceedings of the ACM on Human-Computer Interaction, 1(CSCW), 1–15. DOI: 10.1145/3134691
- Kingdom, F., & Prins, N. (2016). Psychophysics (2nd ed.). Academic Press.
- Klein, O., Hardwicke, T. E., Aust, F., Breuer, J., Danielsson, H., Mohr, A. H., Jzerman, H. I., Nilsonne, G., Vanpaemel, W., & Frank, M. C. (2018). A practical guide for transparency in psychological science. Collabra: Psychology, 4(1), 1–15. DOI: 10.1525/collabra.158
- Knoeferle, K. M., Woods, A., Käppler, F., & Spence, C. (2010). That Sounds Sweet: Using Cross-Modal Correspondences to Communicate Gustatory Attributes. Psychology & Marketing, 30(6), 461–469. DOI: 10.1002/mar
- Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 93(3), 480–490. DOI: 10.1016/j.neuron.2016.12.041
- Kruschke, J. K. (2014). Doing Bayesian Data Analysis. Academic Press.
- Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review, 25(1), 178–206. DOI: 10.3758/s13423-016-1221-4
- Kwapil, T. R., & Barrantes-Vidal, N. (2015). Schizotypy: Looking back and moving forward. Schizophrenia Bulletin, 41(2), S366–S373. DOI: 10.1093/schbul/sbu186
- Labvanced Team. (2022). Labvanced Eye-tracking Guide. Scicovery GmbH.
https://www.labvanced.com/docs/guide/eyetracking/ - Levay, K. E., Freese, J., & Druckman, J. N. (2016). The Demographic and Political Composition of Mechanical Turk Samples. SAGE Open, 6(1). DOI: 10.1177/2158244016636433
- Leys, C., Delacre, M., Mora, Y. L., Lakens, D., & Ley, C. (2019). How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration. International Review of Social Psychology, 32(1), 1–10. DOI: 10.5334/irsp.289
- Lourenco, S. F., & Tasimi, A. (2020). No Participant Left Behind: Conducting Science During COVID-19. Trends in Cognitive Sciences, 24(8), 583–584. DOI: 10.1016/j.tics.2020.05.003
- Makel, M. C., Plucker, J. A., & Hegarty, B. (2012). Replications in Psychology Research: How Often Do They Really Occur? Perspectives on Psychological Science, 7(6), 537–542. DOI: 10.1177/1745691612460688
- Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon’s Mechanical Turk. Behavior Research Methods, 44(1), 1–23. DOI: 10.3758/s13428-011-0124-6
- Masuda, T., Batdorj, B., & Senzaki, S. (2020). Culture and Attention: Future Directions to Expand Research Beyond the Geographical Regions of WEIRD Cultures. Frontiers in Psychology, 11, 1394. DOI: 10.3389/fpsyg.2020.01394
- Mathôt, S., & March, J. (2021). Conducting linguistic experiments online with OpenSesame and OSWeb. PsyArXiv. DOI: 10.31234/osf.io/wnryc
- Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. DOI: 10.3758/s13428-011-0168-7
- Meteyard, L., & Davies, R. A. I. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112. DOI: 10.1016/j.jml.2020.104092
- Meyers, E. A., Walker, A. C., Fugelsang, J. A., & Koehler, D. J. (2020). Reducing the number of non-naïve participants in Mechanical Turk samples. Methods in Psychology, 3,
100032 . DOI: 10.1016/j.metip.2020.100032 - Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie Du Sert, N., Simonsohn, U., Wagenmakers, E. J., Ware, J. J., & Ioannidis, J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1, 0021. DOI: 10.1038/s41562-016-0021
- Nelson, M. T., Seal, M. L., Pantelis, C., & Phillips, L. J. (2013). Evidence of a dimensional relationship between schizotypy and schizophrenia: A systematic review. Neuroscience and Biobehavioral Reviews, 37(3), 317–327. DOI: 10.1016/j.neubiorev.2013.01.004
- Nosek, B. A. (2015). Promoting an open research culture: The TOP guidelines. Science, 348(6242), 1422–1425. DOI: 10.1126/science.aab2374
- Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences of the United States of America, 115(11), 2600–2606. DOI: 10.1073/pnas.1708274114
- Nosek, B. A., Spies, J. R., & Motyl, M. (2012). Scientific Utopia: II. Restructuring Incentives and Practices to Promote Truth Over Publishability. Perspectives on Psychological Science, 7(6), 615–631. DOI: 10.1177/1745691612459058
- Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting satisficing to increase statistical power. Journal of Experimental Social Psychology, 45(4), 867–872. DOI: 10.1016/j.jesp.2009.03.009
- Palan, S., & Schitter, C. (2018). Prolific.ac—A subject pool for online experiments. Journal of Behavioral and Experimental Finance, 17, 22–27. DOI: 10.1016/j.jbef.2017.12.004
- Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon mechanical turk. Judgment and Decision Making, 5(5), 411–419.
- Papoutsaki, A., Daskalova, N., Sangkloy, P., Huang, J., Laskey, J., & Hays, J. (2016). WebGazer: Scalable webcam eye tracking using user interactions. IJCAI International Joint Conference on Artificial Intelligence, 3839–3845. DOI: 10.1145/2702613.2702627
- Parsons, S., Kruijt, A.-W., & Fox, E. (2019). Psychological Science Needs a Standard Practice of Reporting the Reliability of Cognitive-Behavioral Measurements. Advances in Methods and Practices in Psychological Science, 2(4), 378–395. DOI: 10.1177/2515245919879695
- Peer, E., Rothschild, D., Gordon, A., Evernden, Z., & Damer, E. (2021). Data quality of platforms and panels for online behavioral research. Behavior Research Methods, 54(4), 1643–1662. DOI: 10.3758/s13428-021-01694-3
- Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. DOI: 10.3758/s13428-018-01193-y
- Prolific Team. (2022). Prolific’s Attention and Comprehension Check Policy.
https://researcher-help.prolific.co/hc/en-gb/articles/360009223553-Prolific-s-Attention-and-Comprehension-Check-Policy - Pronk, T. (2021). Demo Eye Tracking 2.
https://gitlab.pavlovia.org/tpronk/demo_eye_tracking2 - Pronk, T., Wiers, R. W., Molenkamp, B., & Murre, J. (2020). Mental chronometry in the pocket? Timing accuracy of web applications on touchscreen and keyboard devices. Behavior Research Methods, 52(3), 1371–1382. DOI: 10.3758/s13428-019-01321-2
- Psychtoolbox Team. (2021). Psychtoolbox MeasureDpi.
http://psychtoolbox.org/docs/MeasureDpi - Raine, A., Lencz, T., Scerbo, A., & Kim, D. (1994). Disorganized Features of Schizotypal Personality. Schizophrenia Bulletin, 20(1), 191–201. DOI: 10.1093/schbul/20.1.191
- Rodd, J. (2019). How to maintain data quality when you can’t see your participants. Psychological Science.
https://www.psychologicalscience.org/observer/how-to-maintain-data-quality-when-you-cant-see-your-participants - Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. DOI: 10.1037/0033-2909.86.3.638
- Rousselet, G. A., Pernet, C. R., & Wilcox, R. R. (2017). Beyond differences in means: Robust graphical methods to compare two groups in neuroscience. European Journal of Neuroscience, 46(2), 1738–1748. DOI: 10.1111/ejn.13610
- RStudio Team. (2021). RStudio: Integrated development for R.
- Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019).
“Research Methods for Business Students” Chapter 4: Understanding research philosophy and approaches to theory development . In Research Methods for Business Students (8th ed., pp. 128–171). Pearson Education.www.pearson.com/uk - Sauter, M., Draschkow, D., & Mack, W. (2020). Building, hosting and recruiting: A brief introduction to running behavioral experiments online. Brain Sciences, 10(4), 1–11. DOI: 10.3390/brainsci10040251
- Sauter, M., Stefani, M., & Mack, W. (2022). Equal Quality for Online and Lab Data: A Direct Comparison from Two Dual-Task Paradigms. Open Psychology, 4(1), 47–59. DOI: 10.1515/psych-2022-0003
- Shapiro, D. N., Chandler, J., & Mueller, P. A. (2013). Using mechanical turk to study clinical populations. Clinical Psychological Science, 1(2), 213–220. DOI: 10.1177/2167702612469015
- Sharpe, D., & Poets, S. (2020). Meta-analysis as a response to the replication crisis. Canadian Psychology, 61(4), 377–387. DOI: 10.1037/cap0000215
- Sheskin, M., Scott, K., Mills, C. M., Bergelson, E., Bonawitz, E., Spelke, E. S., Fei-Fei, L., Keil, F. C., Gweon, H., Tenenbaum, J. B., Jara-Ettinger, J., Adolph, K. E., Rhodes, M., Frank, M. C., Mehr, S. A., & Schulz, L. (2020). Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences, 24(9), 675–678. DOI: 10.1016/j.tics.2020.06.004
- Siddi, S., Petretto, D. R., & Preti, A. (2017). Neuropsychological correlates of schizotypy: a systematic review and meta-analysis of cross-sectional studies. Cognitive Neuropsychiatry, 22(3), 186–212. DOI: 10.1080/13546805.2017.1299702
- Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. DOI: 10.1177/0956797611417632
- Smythe, I., & Everatt, J. (2001). Adult Dyslexia Checklist.
http://www.itcarlow.ie/public/userfiles/files/Adult-Checklist.pdf - Sprouse, J. (2011). A validation of Amazon Mechanical Turk for the collection of acceptability judgments in linguistic theory. Behavior Research Methods, 43(1), 155–167. DOI: 10.3758/s13428-010-0039-7
- Stark, Z., Franzen, L., & Johnson, A. P. (2022). Insights from a dyslexia simulation font: Can we simulate reading struggles of individuals with dyslexia? Dyslexia, 28(2), 228–243. DOI: 10.1002/dys.1704
- Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654. DOI: 10.1126/science.153.3736.652
- Stoet, G. (2010). PsyToolkit: A software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 1096–1104. DOI: 10.3758/BRM.42.4.1096
- Stoet, G. (2017). PsyToolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments. Teaching of Psychology, 44(1), 24–31. DOI: 10.1177/0098628316677643
- Uittenhove, K., Jeanneret, S., & Vergauwe, E. (2022). From lab-based to web-based behavioural research: Who you test is more important than how you test. PsyArXiv, February 16. DOI: 10.31234/osf.io/uy4kb
- van den Akker, O. R., Weston, S., Campbell, L., Chopik, B., Damian, R., Davis-Kean, P., Hall, A., Kosie, J., Kruse, E., Olsen, J., Ritchie, S., Valentine, K., Van ’t Veer, A., & Bakker, M. (2021). Preregistration of secondary data analysis: A template and tutorial. Meta-Psychology, 5. DOI: 10.15626/MP.2020.2625
- van Stolk-Cooke, K., Brown, A., Maheux, A., Parent, J., Forehand, R., & Price, M. (2018). Crowdsourcing Trauma: Psychopathology in a Trauma-Exposed Sample Recruited via Mechanical Turk. Journal of Traumatic Stress, 31(4), 549–557. DOI: 10.1002/jts.22303
- Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114. DOI: 10.1037/0096-1523.27.1.92
- Walters, K., Christakis, D. A., & Wright, D. R. (2018). Are Mechanical Turk worker samples representative of health status and health behaviors in the U.S.? PLoS ONE, 13(6),
e0198835 . DOI: 10.1371/journal.pone.0198835 - Warnke, A. (1999). Reading and spelling disorders: Clinical features and causes. European Child & Adolescent Psychiatry, 8(S3), S002–S012. DOI: 10.1007/PL00010689
- Wilcox, R. R., & Rousselet, G. A. (2018). A Guide to Robust Statistical Methods in Neuroscience. Current Protocols in Neuroscience, 82(1), 8–42. DOI: 10.1002/cpns.41
- Woike, J. K. (2019). Upon Repeated Reflection: Consequences of Frequent Exposure to the Cognitive Reflection Test for Mechanical Turk Participants. Frontiers in Psychology, 10, 2646. DOI: 10.3389/fpsyg.2019.02646
- Woods, A. T., Spence, C., Butcher, N., & Deroy, O. (2013). Fast lemons and sour boulders: Testing crossmodal correspondences using an internet-based testing methodology. I-Perception, 4(6), 365–379. DOI: 10.1068/i0586
- Woods, A. T., Velasco, C., Levitan, C. A., Wan, X., & Spence, C. (2015). Conducting perception research over the internet: a tutorial review. PeerJ, 3,
e1058 . DOI: 10.7717/peerj.1058 - Yetano, A., & Royo, S. (2017). Keeping Citizens Engaged: A Comparison Between Online and Offline Participants. Administration and Society, 49(3), 394–422. DOI: 10.1177/0095399715581625
