Have a personal or library account? Click to login
Wearable Movement Data as a Potential Digital Biomarker for Chronic Pain: An Investigation Using Deep Learning Cover

Wearable Movement Data as a Potential Digital Biomarker for Chronic Pain: An Investigation Using Deep Learning

Open Access
|Apr 2024

References

  1. Abeler, K., Bergvik, S., Sand, T., & Friborg, O. (2021). Daily associations between sleep and pain in patients with chronic musculoskeletal pain. J Sleep Res, 30(4). DOI: 10.1111/jsr.13237
  2. Atkinson, J. H., Ancoli-Israel, S., Slater, M. A., Garfin, S. R., & Gillin, C. (1988). Subjective Sleep Disturbance in Chronic Back Pain. Clin J Pain, 4(4), 225. DOI: 10.1097/00002508-198812000-00007
  3. Centers for Disease Control and Prevention. (2023). NHANES – National Health and Nutrition Examination Survey Homepage. Accessed April 11, 2023. https://www.cdc.gov/nchs/nhanes/index.htm
  4. Chung, K. F., & Tso, K. C. (2010). Relationship between insomnia and pain in major depressive disorder: A sleep diary and actigraphy study. Sleep Med, 11(8), 752758. DOI: 10.1016/j.sleep.2009.09.005
  5. Crombez, G., Vlaeyen, J. W. S., Heuts, P. H. G., & Lysens, R. (1999). Pain-related fear is more disabling than pain itself: evidence on the role of pain-related fear in chronic back pain disability. Pain, 80(1), 329339. DOI: 10.1016/S0304-3959(98)00229-2
  6. Domelen, D. R. V. (2018). Accelerometry: Functions for Processing Accelerometer Data. Published online August 24, 2018. Accessed April 11, 2023. https://CRAN.R-project.org/package=accelerometry
  7. Fisher, K., Laikin, A. M., Sharp, K. M. H., Criddle, C. A., Palermo, T. M., & Karlson, C. W. (2018). Temporal relationship between daily pain and actigraphy sleep patterns in pediatric sickle cell disease. J Behav Med, 41(3), 416422. DOI: 10.1007/s10865-018-9918-7
  8. Grunberg, V. A., Greenberg, J., Mace, R. A., Bakhshaie, J., Choi, K. W., & Vranceanu, A. M. (2022). Fitbit Activity, Quota-Based Pacing, and Physical and Emotional Functioning Among Adults With Chronic Pain. J Pain, 23(11), 19331944. DOI: 10.1016/j.jpain.2022.07.003
  9. Heinz, M. V., Price, G. D., & Ruan, F., et al. (2022). Association of Selective Serotonin Reuptake Inhibitor Use With Abnormal Physical Movement Patterns as Detected Using a Piezoelectric Accelerometer and Deep Learning in a Nationally Representative Sample of Noninstitutionalized Persons in the US. JAMA Netw Open, 5(4), e225403. DOI: 10.1001/jamanetworkopen.2022.5403
  10. Herr, K., Coyne, P. J., McCaffery, M., Manworren, R., & Merkel, S. (2011). Pain Assessment in the Patient Unable to Self-Report: Position Statement with Clinical Practice Recommendations. Pain Manag Nurs, 12(4), 230250. DOI: 10.1016/j.pmn.2011.10.002
  11. Hodges, P. W., Coppieters, M. W., MacDonald, D., & Cholewicki, J. (2013). New insight into motor adaptation to pain revealed by a combination of modeling and empirical approaches: New insight into motor adaptation to pain. Eur J Pain, 17(8), 11381146. DOI: 10.1002/j.1532-2149.2013.00286.x
  12. Insel, T. R. (2017). Digital Phenotyping: Technology for a New Science of Behavior. JAMA, 318(13), 12151216. DOI: 10.1001/jama.2017.11295
  13. Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. (2011). Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. National Academies Press (US); 2011. Accessed January 16, 2023. http://www.ncbi.nlm.nih.gov/books/NBK91497/
  14. Jacobson, N. C., & O’Cleirigh, C. (2021). Objective digital phenotypes of worry severity, pain severity and pain chronicity in persons living with HIV. Br J Psychiatry, 218(3), 165167. DOI: 10.1192/bjp.2019.168
  15. Kichline, T., Cushing, C. C., Ortega, A., Friesen, C., & Schurman, J. V. (2019). Associations Between Physical Activity and Chronic Pain Severity in Youth With Chronic Abdominal Pain. Clin J Pain, 35(7), 618624. DOI: 10.1097/AJP.0000000000000716
  16. Kori, S. H. (1990). Kinesiophobia : a new view of chronic pain behavior. Pain Manage. (3), 3543.
  17. Kozey, S. L., Staudenmayer, J. W., Troiano, R. P., & Freedson, P. S. (2010). Comparison of the ActiGraph 7164 and the ActiGraph GT1M during Self-Paced Locomotion. Med Sci Sports Exerc, 42(5), 971976. DOI: 10.1249/MSS.0b013e3181c29e90
  18. Lee, J., & Kim, J. (2022). Evaluation of Spatial and Temporal Performance of Deep Learning Models for Travel Demand Forecasting: Application to Bike-Sharing Demand Forecasting. R. G. González-Ramírez (Ed.), J Adv Transp, 2022, 113. DOI: 10.1155/2022/5934670
  19. Long, A. C., Palermo, T. M., & Manees, A. M. (2007). Brief Report: Using Actigraphy to Compare Physical Activity Levels in Adolescents with Chronic Pain and Healthy Adolescents. J Pediatr Psychol, 33(6), 660665. DOI: 10.1093/jpepsy/jsm136
  20. Lunde, L. H., Pallesen, S., Krangnes, L., & Nordhus, I. H. (2010). Characteristics of Sleep in Older Persons With Chronic Pain: A Study Based on Actigraphy and Self-reporting. Clin J Pain, 26(2), 132. DOI: 10.1097/AJP.0b013e3181b61923
  21. Morley, S. (2008). Psychology of pain. British journal of anaesthesia, 101(1), 2531. DOI: 10.1093/bja/aen123
  22. Moseley, G. L., Gallagher, L., & Gallace, A. (2012). Neglect-like tactile dysfunction in chronic back pain. Neurology, 79(4), 327332. DOI: 10.1212/WNL.0b013e318260cba2
  23. Nahin, R. L. (2015). Estimates of Pain Prevalence and Severity in Adults: United States, 2012. J Pain, 16(8), 769780. DOI: 10.1016/j.jpain.2015.05.002
  24. Parker, R., et al. (2017). “Levels of physical activity in people with chronic pain.” South African Journal of Physiotherapy, 73(1), 17. DOI: 10.4102/sajp.v73i1.323
  25. Rahman, S. A., & Adjeroh, D. A. (2019). Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity. Sci Rep, 9(1), 11425. DOI: 10.1038/s41598-019-46850-0
  26. Sarwar, A., Agu, E. O., Polcari, J., Ciroli, J., Nephew, B., & King, J. (2022). PainRhythms: Machine learning prediction of chronic pain from circadian dysregulation using actigraph data — a preliminary study. Smart Health, 26, 100344. DOI: 10.1016/j.smhl.2022.100344
  27. Smith, T. J., & Hillner, B. E. (2019). The Cost of Pain. JAMA Netw Open, 2(4), e191532. DOI: 10.1001/jamanetworkopen.2019.1532
  28. Spenkelink, C. D., Hutten, M. M., Hermens, H. J., & Greitemann, B. O. (2002). Assessment of activities of daily living with an ambulatory monitoring system: a comparative study in patients with chronic low back pain and nonsymptomatic controls. Clin Rehabil, 16(1), 1626. DOI: 10.1191/0269215502cr463oa
  29. van den Berg-Emons, R. J., Schasfoort, F. C., de Vos, L. A., Bussmann, J. B., & Stam, H. J. (2007). Impact of chronic pain on everyday physical activity⋆. Eur J Pain, 11(5), 587593. DOI: 10.1016/j.ejpain.2006.09.003
  30. Vlaeyen, J. W. S., Crombez, G., & Goubert, L. (2007). The psychology of chronic pain and its management. Physical Therapy Reviews, 12(3), 179188. DOI: 10.1179/108331907X223001
  31. Vlaeyen, J. W. S., Kole-Snijders, A. M. J., Rotteveel, A. M., Ruesink, R., & Heuts, P. H. T. G. (1995). The role of fear of movement/(re)injury in pain disability. J Occup Rehabil, 5(4), 235252. DOI: 10.1007/BF02109988
  32. Wegier, W., & Ksieniewicz, P. (2020). Application of Imbalanced Data Classification Quality Metrics as Weighting Methods of the Ensemble Data Stream Classification Algorithms. Entropy, 22(8), 849. DOI: 10.3390/e22080849
  33. Wilson, A. C., & Palermo, T. M. (2012). Physical Activity and Function in Adolescents With Chronic Pain: A Controlled Study Using Actigraphy. J Pain, 13(2), 121130. DOI: 10.1016/j.jpain.2011.08.008
DOI: https://doi.org/10.5334/paah.329 | Journal eISSN: 2515-2270
Language: English
Submitted on: Dec 22, 2023
|
Accepted on: Mar 1, 2024
|
Published on: Apr 25, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Hannah Dorris, Jenny Oh, Nicholas Jacobson, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.