References
- Abbo, S, Gopher, A, Peleg, Z, Saranga, Y, Fahima, T, Salamini F and Lev-Yadun, S. 2006. ‘The ripples of “The Big (agricultural) Bang”: The spread of early wheat cultivation’. Genome, 49(8): 861–863. DOI: 10.1139/g06-049
- Abbo, S, Gopher, A, Rubin, B and Lev-Yadun, S. 2005. ‘On the Origin of Near Eastern Founder Crops and the ‘Dump-heap Hypothesis’’. Genetic Resources and Crop Evolution 52(5): 491–495. DOI: 10.1007/s10722-004-7069-x
- Abbo, S, Lev-Yadun S and Gopher, A. 2010. ‘Agricultural Origins: Centers and Noncenters; A Near Eastern Reappraisal’. Critical Reviews in Plant Sciences, 29(5): 317–328. DOI: 10.1080/07352689.2010.502823
- Abbo, S, Lev-Yadun S and Gopher, A. 2011. ‘Origin of Near Eastern plant domestication: Homage to Claude Levi-Strauss and ‘La Pensée Sauvage’’. Genetic Resources and Crop Evolution, 58(2): 175–179. DOI: 10.1007/s10722-010-9630-0
- Abbo, S, Lev-Yadun S and Gopher, A. 2012. ‘Plant Domestication and Crop Evolution in the Near East: On Events and Processes’. Critical Reviews in Plant Sciences, 31(3): 241–257. DOI: 10.1080/07352689.2011.645428
- Aksu, AE and Hiscott, RN. 2022. ‘Persistent Holocene outflow from the Black Sea to the eastern Mediterranean Sea still contradicts the Noah’s Flood Hypothesis: A review of 1997–2021 evidence and a regional paleoceanographic synthesis for the latest Pleistocene–Holocene’. Earth-Science Reviews, 227: 103960. DOI: 10.1016/j.earscirev.2022.103960
- Arranz-Otaegui, A, Colledge, S, Zapata, L, Teira-Mayolini, LC and Ibáñez, JJ. 2016. ‘Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in southwest Asia’. Proceedings of the National Academy of Sciences, 113(49): 14001–14006. DOI: 10.1073/pnas.1612797113
- Arranz-Otaegui, A, González Carretero, L, Roe J and Richter, T. 2018. ‘‘Founder crops’ v. Wild plants: Assessing the plant-based diet of the last hunter-gatherers in southwest Asia’. Quat. Sci. Rev., 186: 263–283. DOI: 10.1016/j.quascirev.2018.02.011
- Arranz-Otaegui A and Roe, J. 2023. ‘Revisiting the concept of the ‘Neolithic Founder Crops’ in southwest Asia’. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-023-00917-1
- Asouti, E. 2006. ‘Beyond the Pre-Pottery Neolithic B interaction sphere’. Journal of World Prehistory, 20(2): 87–126. DOI: 10.1007/s10963-007-9008-1
- Austin, MP and Van Niel, KP. 2011. ‘Improving species distribution models for climate change studies: Variable selection and scale’. Journal of Biogeography, 38(1): 1–8. DOI: 10.1111/j.1365-2699.2010.02416.x
- Badr, A, Müller, K, Sch, R, Rabey, HE, Effgen, S, Ibrahim, HH, Pozzi, C, Rohde W and Salamini, F. 2000. ‘On the Origin and Domestication History of Barley (Hordeum vulgare)’. Molecular Biology and Evolution, 17(4): 499–510. DOI: 10.1093/oxfordjournals.molbev.a026330
- Banks, WE, Moncel, M-H, Raynal, J-P, Cobos, ME, Romero-Alvarez, D, Woillez, M-N, Faivre, J-P, Gravina, B, d’Errico, F, Locht, J-L and Santos, F. 2021. ‘An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago’. Scientific Reports, 11(1): 5346. DOI: 10.1038/s41598-021-84805-6
- Barbet-Massin, M, Jiguet, F, Albert, CH and Thuiller, W. 2012. ‘Selecting pseudo-absences for species distribution models: How, where and how many?: How to use pseudo-absences in niche modelling?’ Methods Ecol. Evol., 3(2): 327–338. DOI: 10.1111/j.2041-210X.2011.00172.x
- Bar-Yosef, O. 1998. ‘The Natufian culture in the Levant, threshold to the origins of agriculture’. Evolutionary Anthropology, 6(5): 159–177. DOI: 10.1002/(SICI)1520-6505(1998)6:5<;159::AID-EVAN4>3.0.CO;2-7
- Benito, BM, Svenning, J-C, Kellberg-Nielsen, T, Riede, F, Gil-Romera, G, Mailund, T, Kjaergaard, PC and Sandel, BS. 2017. ‘The ecological niche and distribution of Neanderthals during the Last Interglacial’. J. Biogeogr., 44(1): 51–61. DOI: 10.1111/jbi.12845
- Boyd, B. 2018. ‘Settled? Recent debates in the archaeology of the Epipalaeolithic and Pre-Pottery Neolithic of Southwest Asia’. Asian Archaeology, 1(1): 63–73. DOI: 10.1007/s41826-018-0006-3
- Brown, JL, Hill, DJ, Dolan, AM, Carnaval, AC and Haywood, AM. 2018. ‘PaleoClim, high spatial resolution paleoclimate surfaces for global land areas’. Sci Data, 5: 180254. DOI: 10.1038/sdata.2018.254
- Brown, SC, Wigley, TML, Otto-Bliesner, BL and Fordham, DA. 2020. ‘StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales’. Scientific Data, 7(1): 335. DOI: 10.1038/s41597-020-00663-3
- Butzer, KW. 1971.
‘Agricultural origins in the Near East as a geographical problem’ . In: Streuver, S (ed.) Prehistoric Agriculture. American Museum Sourcebooks in Anthropology. - Campos, VE, Cappa, FM, Viviana, FM and Giannoni, SM. 2016. ‘Using remotely sensed data to model suitable habitats for tree species in a desert environment’. Journal of Vegetation Science, 27(1): 200–210. DOI: 10.1111/jvs.12328
- Chamberlain, S, Barve, V, Mcglinn, D, Oldoni, D, Desmet, P, Geffert L and Ram, K. 2024. Rgbif: Interface to the global biodiversity information facility API.
- Chamberlain, S and Boettiger, C. 2017. ‘R python, and ruby clients for GBIF species occurrence data’. PeerJ PrePrints. DOI: 10.7287/peerj.preprints.3304v1
- Childe, VG. 1936. Man Makes Himself. London: Watts & Co.
- Colledge, S. 2001. Plant exploitation on Epipalaeolithic and early Neolithic sites in the Levant. BAR International series. Oxford: Oxbow. DOI: 10.30861/9781841711904
- Colledge, S, Conolly J and Shennan, S. 2004. ‘Archaeobotanical Evidence for the Spread of Farming in the Eastern Mediterranean’. Current Anthropology, 45(S4): S35–S58. DOI: 10.1086/422086
- Collins, C, Asouti, E, Grove, M, Kabukcu, C, Bradley L and Chiverrell, R. 2018. ‘Understanding resource choice at the transition from foraging to farming: An application of palaeodistribution modelling to the Neolithic of the Konya Plain, south-central Anatolia, Turkey’. J. Archaeol. Sci., 96: 57–72. DOI: 10.1016/j.jas.2018.02.003
- Conolly, J, Manning, K, Colledge, S, Dobney K and Shennan, S. 2012. ‘Species distribution modelling of ancient cattle from early Neolithic sites in SW Asia and Europe’. Holocene, 22(9): 997–1010. DOI: 10.1177/0959683612437871
- Cordova, CE. 2007. Millennial Landscape Change in Jordan: Geoarchaeology and Cultural Ecology. Tucson, AZ: University of Arizona Press. DOI: 10.1353/book.114867
- Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray. DOI: 10.5962/bhl.title.68064
- David Polly, P and Eronen, JT. 2011.
‘Mammal Associations in the Pleistocene of Britain: Implications of Ecological Niche Modelling and a Method for Reconstructing Palaeoclimate’ . In: Ashton, N, Lewis, SG, and Stringer, C (eds.) Developments in Quaternary Sciences. Elsevier. pp. 279–304. DOI: 10.1016/B978-0-444-53597-9.00015-7 - de Andrés-Herrero, M, Becker D and Weniger, G-C. 2018. ‘Reconstruction of LGM faunal patterns using Species Distribution Modelling. The archaeological record of the Solutrean in Iberia’. Quat. Int., 485: 199–208. DOI: 10.1016/j.quaint.2017.10.042
- de Candolle, A. 1886. The Origin of Cultivated Plants. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139107365
- Dennell, RW. 1976. ‘The economic importance of plant resources represented on archaeological sites’. Journal of Archaeological Science, 3(3): 229–247. DOI: 10.1016/0305-4403(76)90057-1
- Di Virgilio, G, Wardell-Johnson, GW, Robinson, TP, Temple-Smith D and Hesford, J. 2018. ‘Characterising fine-scale variation in plant species richness and endemism across topographically complex, semi-arid landscapes’. Journal of Arid Environments, 156: 59–68. DOI: 10.1016/j.jaridenv.2018.04.005
- Diamond, J. 2002. ‘Evolution, consequences and future of plant and animal domestication’. Nature, 418(6898): 700–707. DOI: 10.1038/nature01019
- Dormann, CF, Elith, J, Bacher, S, Buchmann, C, Carl, G, Carré, G, Marquéz, JRG, Gruber, B, Lafourcade, B, Leitão, PJ, Münkemüller, T, Mclean, C, Osborne, PE, Reineking, B, Schröder, B, Skidmore, AK, Zurell D and Lautenbach, S. 2013. ‘Collinearity: A review of methods to deal with it and a simulation study evaluating their performance’. Ecography, 36(1): 27–46. DOI: 10.1111/j.1600-0587.2012.07348.x
- Douché, C and Willcox, G. 2018. ‘New archaeobotanical data from the Early Neolithic sites of Dja’de el-Mughara and Tell Aswad (Syria): A comparison between the Northern and the Southern Levant’. Paléorient, 44(2): 45–58.
- Dubuis, A, Giovanettina, S, Pellissier, L, Pottier, J, Vittoz P and Guisan, A. 2013. ‘Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables’. Journal of Vegetation Science, 24(4): 593–606. DOI: 10.1111/jvs.12002
- Farr, TG, Rosen, PA, Caro, E, Crippen, R, Duren, R, Hensley, S, Kobrick, M, Paller, M, Rodriguez, E, Roth, L, Seal, D, Shaffer, S, Shimada, J, Umland, J, Werner, M, Oskin, M, Burbank D and Alsdorf, D. 2007. ‘The Shuttle Radar Topography Mission’. Rev. Geophys., 45(2): RG2004. DOI: 10.1029/2005RG000183
- Fordham, DA, Saltré, F, Haythorne, S, Wigley, TML, Otto-Bliesner, BL, Chan, KC and Brook, BW. 2017. ‘PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales’. Ecography, 40(11): 1348–1358. DOI: 10.1111/ecog.03031
- Franklin, J and Miller, JA. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press.
- Franklin, J, Potts, AJ, Fisher, EC, Cowling, RM and Marean, CW. 2015. ‘Paleodistribution modeling in archaeology and paleoanthropology’. Quat. Sci. Rev., 110: 1–14. DOI: 10.1016/j.quascirev.2014.12.015
- Fuller, DQ. 2010. ‘An emerging paradigm shift in the origins of agriculture’. General Anthropology, 17(2): 1–12. DOI: 10.1111/j.1939-3466.2010.00010.x
- Fuller, DQ and Colledge, S. 2008. ‘Recent lessons from Near Eastern archaeobotany: Wild cereal use, pre-domestication cultivation and tracing multiple origins and dispersals’. Pragdhara, 18: 105–134.
- Fuller, DQ, Lucas, L, Carretero, LG and Stevens, C. 2018. ‘From intermediate economies to agriculture: Trends in wild food use, domestication and cultivation among early villages in Southwest Asia’. Paléorient, 44(2): 59–74.
- Fuller, DQ, Willcox G and Allaby, RG. 2011. ‘Cultivation and domestication had multiple origins: Arguments against the core area hypothesis for the origins of agriculture in the Near East’. World Archaeol, 43(4): 628–652. DOI: 10.1080/00438243.2011.624747
- GBIF. 2025a. GBIF Occurrence Download (14 August 2025). DOI: 10.15468/dl.t8sqqm
- GBIF. 2025b. What is GBIF?
https://www.gbif.org/what-is-gbif [Last accessed 23 January 2026]. - GBIF Secretariat. 2023. GBIF Backbone Taxonomy. DOI: 10.15468/39OMEI
- González Carretero, L, Lucas, L, Stevens C and Fuller, DQ. 2023. ‘Investigating early agriculture, plant use and culinary practices at Neolithic Jarmo (Iraqi Kurdistan)’. Journal of Archaeological Science: Reports, 52: 104264. DOI: 10.1016/j.jasrep.2023.104264
- Gopher, A, Abbo S and Yadun, SL. 2001. ‘The ‘when’, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant’. Documenta Praehistorica, 28: 49–62. DOI: 10.4312/dp.28.3
- Guran, SH, Yousefi, M, Kafash A and Ghasidian, E. 2024. ‘Reconstructing contact and a potential interbreeding geographical zone between Neanderthals and anatomically modern humans’. Scientific Reports, 14(1): 20475. DOI: 10.1038/s41598-024-70206-y
- Harlan, JR. 1971. ‘Agricultural Origins: Centers and Noncenters’. Science, 174(4008): 468–474. DOI: 10.1126/science.174.4008.468
- Harlan, JR. 1977.
‘The Origins of Cereal Agriculture in the Old World’ . In: Reed, CA (ed.) Origins of Agriculture. De Gruyter Mouton. pp. 357–384. DOI: 10.1515/9783110813487.357 - Harlan, JR and Zohary, D. 1966. ‘Distribution of Wild Wheats and Barley’. Science, 153(3740): 1074–1080. DOI: 10.1126/science.153.3740.1074
- Harris, DR. 1989.
‘An evolutionary continuum of people–plant interaction’ . In: The Emergence of Agriculture. Routledge. - Harris, DR. 1990. ‘Vavilov’s concept of centres of origin of cultivated plants: Its genesis and its influence on the study of agricultural origins’. Biological Journal of the Linnean Society, 39(1): 7–16. DOI: 10.1111/j.1095-8312.1990.tb01608.x
- Harris, DR. 2007.
‘Agriculture, Cultivation and Domestication: Exploring the Conceptual Framework of Early Food Production’ . In: Rethinking Agriculture. Routledge. - Harris, DR and Hillman, GC. 1989.
‘Introduction’ . In: Foraging and Farming: The Evolution of Plant Exploitation. Routledge. - Hastorf, CA and Popper, VS. 1988. Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains. University of Chicago Press.
- Helbæk, H. 1959. ‘How farming began in the Old World’. Archaeology, 12(3): 183–189.
- Helbæk, H. 1969. Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. University of Michigan Ann Arbor.
- Hengl, T, de Jesus, JM, MacMillan, RA, Batjes, NH, Heuvelink, GBM, Ribeiro, E, Samuel-Rosa, A, Kempen, B, Leenaars, JGB, Walsh, MG and Gonzalez, MR. 2014. ‘SoilGrids1km–global soil information based on automated mapping’. PLoS One, 9(8):
e105992 . DOI: 10.1371/journal.pone.0105992 - Hengl, T, Men des deJesus, J, Heuvelink, GBM, Ruiperez Gonzalez, M, Kilibarda, M, Blagotić, A, Shangguan, W, Wright, MN, Geng, X, Bauer-Marschallinger, B, Guevara, MA, Vargas, R, MacMillan, RA, Batjes, NH, Leenaars, JGB, Ribeiro, E, Wheeler, I, Mantel S and Kempen, B. 2017. ‘SoilGrids250m: Global gridded soil information based on machine learning’. PLoS One, 12(2):
e0169748 . DOI: 10.1371/journal.pone.0169748 - Hernandez, PA, Graham, CH, Master, LL and Albert, DL. 2006. ‘The effect of sample size and species characteristics on performance of different species distribution modeling methods’. Ecography, 29(5): 773–785. DOI: 10.1111/j.0906-7590.2006.04700.x
- Heun, M, Schäfer-Pregl, R, Klawan, D, Castagna, R, Accerbi, M, Borghi B and Salamini, F. 1997. ‘Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting’. Science, 278(5341): 1312–1314. DOI: 10.1126/science.278.5341.1312
- Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG and Jarvis, A. 2005. ‘Very high resolution interpolated climate surfaces for global land areas’. Int. J. Climatol., 25(15): 1965–1978. DOI: 10.1002/joc.1276
- Hillman, GC and Davies, MS. 1990. ‘Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications’. Journal of World Prehistory, 4(2): 157–222. DOI: 10.1007/BF00974763
- Hillman, GC and Davies, MS. 1992. ‘Domestication Rate in Wild Wheats and Barley under Primitive Cultivation: Premiminary Results and Archaeological Implications of Field Measurements of Selection Coefficient’. Monographie du CRA, (6): 113–158.
- Hillman, G, Hedges, R, Moore, A, Colledge S and Pettitt, P. 2001. ‘New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates’. The Holocene, 11(4): 383–393. DOI: 10.1191/095968301678302823
- Hopf, M. 1969.
‘Plant remains and early farming in Jericho 1’ . In: The Domestication and Exploitation of Plants and Animals. Chicago: Aldine. - Hopf, M. 1986.
‘Archaeological Evidence of the Spread and Use of Some Members of the Leguminosae Family’ . In: Barigozzi, C (ed.) Developments in Agricultural and Managed Forest Ecology. The origin and domestication of cultivated plants. Elsevier. pp. 35–60. DOI: 10.1016/B978-0-444-42703-8.50008-7 - Iob A and Botigué, L. 2023. ‘Genomic analysis of emmer wheat shows a complex history with two distinct domestic groups and evidence of differential hybridization with wild emmer from the western Fertile Crescent’. Vegetation History and Archaeobotany, 32(5): 545–558. DOI: 10.1007/s00334-022-00898-7
- Jones, MD, Abu-Jaber, N, AlShdaifat, A, Baird, D, Cook, BI, Cuthbert, MO, Dean, JR, Djamali, M, Eastwood, W, Fleitmann, D, Haywood, A, Kwiecien, O, Larsen, J, Maher, LA, Metcalfe, SE, Parker, A, Petrie, CA, Primmer, N, Richter, T, Roberts, N, Roe, J, Tindall, JC, Ünal-İmer E and Weeks, L. 2019. ‘20,000 years of societal vulnerability and adaptation to climate change in southwest Asia’. WIREs Water, 6(2):
e1330 . DOI: 10.1002/wat2.1330 - Karger, DN, Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, RW, Zimmermann, NE, Linder, HP and Kessler, M. 2017. ‘Climatologies at high resolution for the earth’s land surface areas’. Sci Data, 4: 170122. DOI: 10.1038/sdata.2017.122
- Karger, DN, Nobis, MP, Normand, S, Graham, CH and Zimmermann, NE. 2023. ‘CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum’. Climate of the Past, 19(2): 439–456. DOI: 10.5194/cp-19-439-2023
- Kilian, B, Özkan, H, Walther, A, Kohl, J, Dagan, T, Salamini F and Martin, W. 2007. ‘Molecular Diversity at 18 Loci in 321 Wild and 92 Domesticate Lines Reveal No Reduction of Nucleotide Diversity during Triticum monococcum (Einkorn) Domestication: Implications for the Origin of Agriculture’. Molecular Biology and Evolution, 24(12): 2657–2668. DOI: 10.1093/molbev/msm192
- Kirkbride, D. 1966. ‘Five Seasons at the Pre-Pottery Neolithic Village of Beidha In Jordan’. Palestine Exploration Quarterly. DOI: 10.1179/peq.1966.98.1.8
- Kislev, ME. 1989. ‘Origins of the cultivation oflathyrus sativus andL. Cicera (fabaceae)’. Economic Botany, 43(2): 262–270. DOI: 10.1007/BF02859868
- Kopecký, M and Čížková, Š. 2010. ‘Using topographic wetness index in vegetation ecology: Does the algorithm matter?’ Appl. Veg. Sci., 13(4): 450–459. DOI: 10.1111/j.1654-109X.2010.01083.x
- Kozłowski, SK and Aurenche, O. 2005. Territories, boundaries and cultures in the Neolithic Near East. Archaeopress. DOI: 10.30861/9781841718071
- Krzyzanska, M. 2023. Modelling spatio-temporal changes in the ecological niches of major domesticated crops in china: Application of species distribution modelling. PhD thesis. University of Cambridge.
- Krzyzanska, M, Hunt, HV, Crema, ER and Jones, MK. 2022. ‘Modelling the potential ecological niche of domesticated buckwheat in China: Archaeological evidence, environmental constraints and climate change’. Vegetation History and Archaeobotany, 31(4): 331–345. DOI: 10.1007/s00334-021-00856-9
- Kuhn, M and Silge, J. 2022. Tidy Modeling with R: A Framework for Modeling in the Tidyverse. O’Reilly.
- Ladizinsky, G and Adler, A. 1976. ‘The origin of chickpea Cicer arietinum L’. Euphytica, 25(1): 211–217. DOI: 10.1007/BF00041547
- Leempoel, K, Parisod, C, Geiser, C, Daprà, L, Vittoz P and Joost, S. 2015. ‘Very high-resolution digital elevation models: Are multi-scale derived variables ecologically relevant?’ Methods in Ecology and Evolution, 6(12): 1373–1383. DOI: 10.1111/2041-210X.12427
- Lev-Yadun, S, Gopher A and Abbo, S. 2000a. ‘The Cradle of Agriculture’. Science, 288(5471): 1602–1603. DOI: 10.1126/science.288.5471.1602
- Lev-Yadun, S, Gopher A and Abbo, S. 2000b. ‘The Cradle of Agriculture’. Science, 288(5471): 1602–1603. DOI: 10.1126/science.288.5471.1602
- Levy, AA and Feldman, M. 2022. ‘Evolution and origin of bread wheat’. The Plant Cell, 34(7): 2549–2567. DOI: 10.1093/plcell/koac130
- Lindsay, JB. 2016. ‘Whitebox GAT: A case study in geomorphometric analysis’. Comput. Geosci., 95: 75–84. DOI: 10.1016/j.cageo.2016.07.003
- Liu, C, Berry, PM, Dawson, TP and Pearson, RG. 2005. ‘Selecting thresholds of occurrence in the prediction of species distributions’. Ecography, 28(3): 385–393. DOI: 10.1111/j.0906-7590.2005.03957.x
- Liu, C, Newell G and White, M. 2016. ‘On the selection of thresholds for predicting species occurrence with presence-only data’. Ecology and Evolution, 6(1): 337–348. DOI: 10.1002/ece3.1878
- Liu, C, White M and Newell, G. 2013. ‘Selecting thresholds for the prediction of species occurrence with presence-only data’. Journal of Biogeography, 40(4): 778–789. DOI: 10.1111/jbi.12058
- Luan, J, Zhang, C, Xu, B, Xue Y and Ren, Y. 2020. ‘The predictive performances of random forest models with limited sample size and different species traits’. Fisheries Research, 227: 105534. DOI: 10.1016/j.fishres.2020.105534
- Lucas, L and Fuller, D. 2018 Dataset: From intermediate economies to agriculture: Trends in wild food use, domestication and cultivation among early villages in southwest Asia.
- Luo, M-C, Yang, Z-L, You, FM, Kawahara, T, Waines, JG and Dvorak, J. 2007. ‘The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication’. Theoretical and Applied Genetics, 114(6): 947–959. DOI: 10.1007/s00122-006-0474-0
- Maher, LA, Richter T and Stock, JT. 2012. ‘The Pre-Natufian Epipaleolithic: Long-term Behavioral Trends in the Levant’. Evolutionary Anthropology: Issues, News, and Reviews, 21(2): 69–81. DOI: 10.1002/evan.21307
- Michczyński, A. 2007. ‘Is it Possible to Find a Good Point Estimate of a Calibrated Radiocarbon Date?’ Radiocarbon, 49(2): 393–401. DOI: 10.1017/S0033822200042326
- Miller, T, Blackwood, CB and Case, AL. 2024. ‘Assessing the utility of SoilGrids250 for biogeographic inference of plant populations’. Ecology and Evolution, 14(3):
e10986 . DOI: 10.1002/ece3.10986 - Mod, HK, Scherrer, D, Luoto M and Guisan, A. 2016. ‘What we use is not what we know: Environmental predictors in plant distribution models’. Journal of Vegetation Science, 27(6): 1308–1322. DOI: 10.1111/jvs.12444
- Molina-Cano, J-L, Russell, JR, Moralejo, MA, Escacena, JL, Arias G and Powell, W. 2005. ‘Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley’. Theoretical and Applied Genetics, 110(4): 613–619. DOI: 10.1007/s00122-004-1878-3
- Moore, AMT, Hillman, GC and Legge, AJ. 2000. Village on the Euphrates: From Foraging to Farming at Abu Hureyra. Oxford: Oxford University Press.
- Mori, N. 2003. ‘Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting’. In: Proc. 10th. Int. Wheat Genetics Symp., Paestum, Italy, 2003. 2003. pp. 25–28.
- Ozkan, H, Brandolini, A, Pozzi, C, Effgen, S, Wunder J and Salamini, F. 2005. ‘A reconsideration of the domestication geography of tetraploid wheats’. Theoretical and Applied Genetics, 110(6): 1052–1060. DOI: 10.1007/s00122-005-1925-8
- Özkan, H, Brandolini, A, Schäfer-Pregl R and Salamini, F. 2002. ‘AFLP Analysis of a Collection of Tetraploid Wheats Indicates the Origin of Emmer and Hard Wheat Domestication in Southeast Turkey’. Molecular Biology and Evolution, 19(10): 1797–1801. DOI: 10.1093/oxfordjournals.molbev.a004002
- Özkan, H, Willcox, G, Graner, A, Salamini F and Kilian, B. 2011. ‘Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides)’. Genetic Resources and Crop Evolution, 58(1): 11–53. DOI: 10.1007/s10722-010-9581-5
- Peake, H and Fleure, HJ. 1927. Corridors of Time III: Peasants and Potters. Oxford: Clarendon Press.
- Pumpelly, R. 1908. Explorations in Turkestan. Carnegie Institution Publication 73. Washington, DC: Carnegie Institution.
- Purugganan, MD and Fuller, DQ. 2009. ‘The nature of selection during plant domestication’. Nature, 457(7231): 843–848. DOI: 10.1038/nature07895
- Riehl, S and Kümmel, C. 2005 Archaeobotanical Database Of Eastern Mediterranean And Near Eastern Sites (ADEMNES).
https://www.ademnes.de/ . - Riehl, S, Zeidi M and Conard, NJ. 2013. ‘Emergence of Agriculture in the Foothills of the Zagros Mountains of Iran’. Science, 341(6141): 65–67. DOI: 10.1126/science.1236743
- Roberts, N, Woodbridge, J, Bevan, A, Palmisano, A, Shennan S and Asouti, E. 2018. ‘Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean’. Quaternary Science Reviews, 184: 47–67. DOI: 10.1016/j.quascirev.2017.09.011
- Schreiber, M, Özkan, H, Komatsuda T and Mascher, M. 2021.
‘Evolution and Domestication of Rye’ . In: Rabanus-Wallace, MT and Stein, N (eds.) The Rye Genome. Cham: Springer International Publishing. pp. 85–100. DOI: 10.1007/978-3-030-83383-1_6 - Shennan, SJ and Conolly, J. 2007. Dataset: The Origin and Spread of Neolithic Plant Economies in the Near East and Europe. DOI: 10.5284/1000093
- Sillero, N, Arenas-Castro, S, Enriquez-Urzelai, U, Vale, CG, Sousa-Guedes, D, Martínez-Freiría, F, Real, R and Barbosa, AM. 2021. ‘Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling’. Ecological Modelling, 456: 109671. DOI: 10.1016/j.ecolmodel.2021.109671
- Smith, BD. 1995. The emergence of agriculture. New York, NY: Scientific American Library.
- Stockwell, DRB and Peterson, AT. 2002. ‘Effects of sample size on accuracy of species distribution models’. Ecological Modelling, 148(1): 1–13. DOI: 10.1016/S0304-3800(01)00388-X
- Tanno, K and Willcox, G. 2006. ‘How Fast Was Wild Wheat Domesticated?’ Science, 311(5769): 1886–1886. DOI: 10.1126/science.1124635
- Tanno, K and Willcox, G. 2012. ‘Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East’. Vegetation History and Archaeobotany, 21(2): 107–115. DOI: 10.1007/s00334-011-0316-0
- Townsend Peterson, A and Soberón, J. 2012. ‘Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right’. NatCon, 10(2): 102–107. DOI: 10.4322/natcon.2012.019
- Valavi, R, Elith, J, Lahoz-Monfort, JJ and Guillera-Arroita, G. 2021. ‘Modelling species presence-only data with random forests’. Ecography, 44(12): 1731–1742. DOI: 10.1111/ecog.05615
- Valavi, R, Guillera-Arroita, G, Lahoz-Monfort, JJ and Elith, J. 2022. ‘Predictive performance of presence-only species distribution models: A benchmark study with reproducible code’. Ecological Monographs, 92(1):
e01486 . DOI: 10.1002/ecm.1486 - van Zeist, W and Bottema, S. 1991. Late Quaternary vegetation of the Near East. Tübinger Atlas des Vorderen Orients, Reihe A (Naturwissenschaften) 18. Wiesbaden: Reichert Verlag.
- Vavilov, N. 1926. Studies on the origin of cultivated plants. Leningrad: Institute of Applied Botany and Plant Breeding.
- Velazco, SJE, Galvão, F, Villalobos, F and De Marco Júnior, P. 2017. ‘Using worldwide edaphic data to model plant species niches: An assessment at a continental extent’. PloS One, 12(10):
e0186025 . DOI: 10.1371/journal.pone.0186025 - Verhagen, P and Whitley, TG. 2020.
‘Predictive Spatial Modelling’ . In: Archaeological Spatial Analysis. Routledge. DOI: 10.4324/9781351243858-13 - von Humboldt, A. 1807.
Essai sur la géographie des plantes . Paris. - Wallace, M, Jones, G, Charles, M, Forster, E, Stillman, E, Bonhomme, V, Livarda, A, Osborne, CP, Rees, M, Frenck G and Preece, C. 2018. ‘Re-analysis of archaeobotanical remains from pre- and early agricultural sites provides no evidence for a narrowing of the wild plant food spectrum during the origins of agriculture in southwest Asia’. Veg. Hist. Archaeobot. DOI: 10.1007/s00334-018-0702-y
- Wallace, M, Livarda, A, Charles M and Jones, G. 2018. Origins of agriculture: Archaeobotanical database. DOI: 10.5284/1046750
- Weide, A, Riehl, S, Zeidi M and Conard, NJ. 2017. ‘Reconstructing subsistence practices: Taphonomic constraints and the interpretation of wild plant remains at aceramic Neolithic Chogha Golan, Iran’. Vegetation History and Archaeobotany, 26(5): 487–504. DOI: 10.1007/s00334-017-0607-1
- Weide, A, Riehl, S, Zeidi M and Conard, NJ. 2018. ‘A systematic review of wild grass exploitation in relation to emerging cereal cultivation throughout the Epipalaeolithic and aceramic Neolithic of the Fertile Crescent’. PLOS ONE, 13(1):
e0189811 . DOI: 10.1371/journal.pone.0189811 - Weiss, E, Kislev, ME and Hartmann, A. 2006. ‘Autonomous Cultivation Before Domestication’. Science, 312(5780): 1608–1610. DOI: 10.1126/science.1127235
- Weiss, E, Wetterstrom, W, Nadel D and Bar-Yosef, O. 2004. ‘The broad spectrum revisited: Evidence from plant remains’. Proceedings of the National Academy of Sciences, 101(26): 9551–9555. DOI: 10.1073/pnas.0402362101
- Whitlam, J, Bogaard, A, Matthews, R, Matthews, W, Mohammadifar, Y, Ilkhani H and Charles, M. 2018. ‘Pre-agricultural plant management in the uplands of the central Zagros: The archaeobotanical evidence from Sheikh-e Abad’. Vegetation History and Archaeobotany, 27(6): 817–831. DOI: 10.1007/s00334-018-0675-x
- Willcox, G. 2024. ‘Sowing, harvesting and tilling at the end of the Pleistocene/beginning of the Holocene in northern Syria: A reassessment of cereal and pulse exploitation’. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-023-00984-4
- Willcox, G, Buxo R and Herveux, L. 2009. ‘Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria’. The Holocene, 19(1): 151–158. DOI: 10.1177/0959683608098961
- Willcox, G, Fornite S and Herveux, L. 2008. ‘Early Holocene cultivation before domestication in northern Syria’. Vegetation History and Archaeobotany, 17(3): 313–325. DOI: 10.1007/s00334-007-0121-y
- Wisz, MS, Hijmans, RJ, Li, J, Peterson, AT, Graham, CH, Guisan, A and NCEAS Predicting Species Distributions Working Group. 2008. ‘Effects of sample size on the performance of species distribution models’. Diversity and Distributions, 14(5): 763–773. DOI: 10.1111/j.1472-4642.2008.00482.x
- Wright, MN and Ziegler, A. 2017. ‘Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R’. Journal of Statistical Software, 77: 1–17. DOI: 10.18637/jss.v077.i01
- Yaworsky, PM, Hussain, ST and Riede, F. 2023. ‘Climate-driven habitat shifts of high-ranked prey species structure Late Upper Paleolithic hunting’. Scientific Reports, 13(1): 4238. DOI: 10.1038/s41598-023-31085-x
- Yaworsky, PM, Hussain, ST and Riede, F. 2024. ‘The effects of climate and population on human land use patterns in Europe from 22ka to 9ka ago’. Quaternary Science Reviews, 344: 108956. DOI: 10.1016/j.quascirev.2024.108956
- Yaworsky, PM, Nielsen, ES and Nielsen, TK. 2024. ‘The Neanderthal niche space of Western Eurasia 145 ka to 30 ka ago’. Scientific Reports, 14(1): 7788. DOI: 10.1038/s41598-024-57490-4
- Yeomans, L, Martin L and Richter, T. 2017. ‘Expansion of the known distribution of Asiatic mouflon (Ovis orientalis) in the Late Pleistocene of the Southern Levant’. Royal Society Open Science, 4(8): 170409. DOI: 10.1098/rsos.170409
- Yousefi, M, Heydari-Guran, S, Kafash A and Ghasidian, E. 2020. ‘Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau’. Scientific Reports, 10(1): 14248. DOI: 10.1038/s41598-020-71166-9
- Zeder, MA. 2011. ‘The Origins of Agriculture in the Near East’. Curr. Anthropol., 52(S4): S221–S235. DOI: 10.1086/659307
- Zeder, MA. 2024. ‘Out of the Shadows: Reestablishing the Eastern Fertile Crescent as a Center of Agricultural Origins: Part 1’. Journal of Archaeological Research. DOI: 10.1007/s10814-024-09195-5
- Zohary, D. 1969.
‘The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World’ . In: The Domestication and Exploitation of Plants and Animals. Routledge. - Zohary, D and Hopf, M. 1973. ‘Domestication of Pulses in the Old World’. Science, 182(4115): 887–894. DOI: 10.1126/science.182.4115.887
- Zohary, D and Hopf, M. 1988.
Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia , Europe, and the Mediterranean Basin. 1st ed. Oxford: Oxford University Press. - Zohary, D and Spiegel-Roy, P. 1975. ‘Beginnings of Fruit Growing in the Old World’. Science, 187(4174): 319–327. DOI: 10.1126/science.187.4174.319
- Zohary, D, Weiss E and Hopf, M. 2012. Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. 4th ed. Oxford: Oxford University Press. DOI: 10.1093/acprof:osobl/9780199549061.001.0001
- Zohary, M. 1973. Geobotanical foundations of the Middle East. Stuttgart: Gustav Eischer.
