Have a personal or library account? Click to login
Biogeography of Crop Progenitors and Wild Plant Resources in the Terminal Pleistocene and Early Holocene of West Asia, 14.7–8.3 ka Cover

Biogeography of Crop Progenitors and Wild Plant Resources in the Terminal Pleistocene and Early Holocene of West Asia, 14.7–8.3 ka

By: Joe Roe and  Amaia Arranz-Otaegui  
Open Access
|Feb 2026

References

  1. Abbo, S, Gopher, A, Peleg, Z, Saranga, Y, Fahima, T, Salamini F and Lev-Yadun, S. 2006. ‘The ripples of “The Big (agricultural) Bang”: The spread of early wheat cultivation’. Genome, 49(8): 861863. DOI: 10.1139/g06-049
  2. Abbo, S, Gopher, A, Rubin, B and Lev-Yadun, S. 2005. ‘On the Origin of Near Eastern Founder Crops and the ‘Dump-heap Hypothesis’’. Genetic Resources and Crop Evolution 52(5): 491495. DOI: 10.1007/s10722-004-7069-x
  3. Abbo, S, Lev-Yadun S and Gopher, A. 2010. ‘Agricultural Origins: Centers and Noncenters; A Near Eastern Reappraisal’. Critical Reviews in Plant Sciences, 29(5): 317328. DOI: 10.1080/07352689.2010.502823
  4. Abbo, S, Lev-Yadun S and Gopher, A. 2011. ‘Origin of Near Eastern plant domestication: Homage to Claude Levi-Strauss and ‘La Pensée Sauvage’’. Genetic Resources and Crop Evolution, 58(2): 175179. DOI: 10.1007/s10722-010-9630-0
  5. Abbo, S, Lev-Yadun S and Gopher, A. 2012. ‘Plant Domestication and Crop Evolution in the Near East: On Events and Processes’. Critical Reviews in Plant Sciences, 31(3): 241257. DOI: 10.1080/07352689.2011.645428
  6. Aksu, AE and Hiscott, RN. 2022. ‘Persistent Holocene outflow from the Black Sea to the eastern Mediterranean Sea still contradicts the Noah’s Flood Hypothesis: A review of 1997–2021 evidence and a regional paleoceanographic synthesis for the latest Pleistocene–Holocene’. Earth-Science Reviews, 227: 103960. DOI: 10.1016/j.earscirev.2022.103960
  7. Arranz-Otaegui, A, Colledge, S, Zapata, L, Teira-Mayolini, LC and Ibáñez, JJ. 2016. ‘Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in southwest Asia’. Proceedings of the National Academy of Sciences, 113(49): 1400114006. DOI: 10.1073/pnas.1612797113
  8. Arranz-Otaegui, A, González Carretero, L, Roe J and Richter, T. 2018. ‘‘Founder crops’ v. Wild plants: Assessing the plant-based diet of the last hunter-gatherers in southwest Asia’. Quat. Sci. Rev., 186: 263283. DOI: 10.1016/j.quascirev.2018.02.011
  9. Arranz-Otaegui A and Roe, J. 2023. ‘Revisiting the concept of the ‘Neolithic Founder Crops’ in southwest Asia’. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-023-00917-1
  10. Asouti, E. 2006. ‘Beyond the Pre-Pottery Neolithic B interaction sphere’. Journal of World Prehistory, 20(2): 87126. DOI: 10.1007/s10963-007-9008-1
  11. Austin, MP and Van Niel, KP. 2011. ‘Improving species distribution models for climate change studies: Variable selection and scale’. Journal of Biogeography, 38(1): 18. DOI: 10.1111/j.1365-2699.2010.02416.x
  12. Badr, A, Müller, K, Sch, R, Rabey, HE, Effgen, S, Ibrahim, HH, Pozzi, C, Rohde W and Salamini, F. 2000. ‘On the Origin and Domestication History of Barley (Hordeum vulgare)’. Molecular Biology and Evolution, 17(4): 499510. DOI: 10.1093/oxfordjournals.molbev.a026330
  13. Banks, WE, Moncel, M-H, Raynal, J-P, Cobos, ME, Romero-Alvarez, D, Woillez, M-N, Faivre, J-P, Gravina, B, d’Errico, F, Locht, J-L and Santos, F. 2021. ‘An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago’. Scientific Reports, 11(1): 5346. DOI: 10.1038/s41598-021-84805-6
  14. Barbet-Massin, M, Jiguet, F, Albert, CH and Thuiller, W. 2012. ‘Selecting pseudo-absences for species distribution models: How, where and how many?: How to use pseudo-absences in niche modelling?’ Methods Ecol. Evol., 3(2): 327338. DOI: 10.1111/j.2041-210X.2011.00172.x
  15. Bar-Yosef, O. 1998. ‘The Natufian culture in the Levant, threshold to the origins of agriculture’. Evolutionary Anthropology, 6(5): 159177. DOI: 10.1002/(SICI)1520-6505(1998)6:5<;159::AID-EVAN4>3.0.CO;2-7
  16. Benito, BM, Svenning, J-C, Kellberg-Nielsen, T, Riede, F, Gil-Romera, G, Mailund, T, Kjaergaard, PC and Sandel, BS. 2017. ‘The ecological niche and distribution of Neanderthals during the Last Interglacial’. J. Biogeogr., 44(1): 5161. DOI: 10.1111/jbi.12845
  17. Boyd, B. 2018. ‘Settled? Recent debates in the archaeology of the Epipalaeolithic and Pre-Pottery Neolithic of Southwest Asia’. Asian Archaeology, 1(1): 6373. DOI: 10.1007/s41826-018-0006-3
  18. Brown, JL, Hill, DJ, Dolan, AM, Carnaval, AC and Haywood, AM. 2018. ‘PaleoClim, high spatial resolution paleoclimate surfaces for global land areas’. Sci Data, 5: 180254. DOI: 10.1038/sdata.2018.254
  19. Brown, SC, Wigley, TML, Otto-Bliesner, BL and Fordham, DA. 2020. ‘StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales’. Scientific Data, 7(1): 335. DOI: 10.1038/s41597-020-00663-3
  20. Butzer, KW. 1971. ‘Agricultural origins in the Near East as a geographical problem’. In: Streuver, S (ed.) Prehistoric Agriculture. American Museum Sourcebooks in Anthropology.
  21. Campos, VE, Cappa, FM, Viviana, FM and Giannoni, SM. 2016. ‘Using remotely sensed data to model suitable habitats for tree species in a desert environment’. Journal of Vegetation Science, 27(1): 200210. DOI: 10.1111/jvs.12328
  22. Chamberlain, S, Barve, V, Mcglinn, D, Oldoni, D, Desmet, P, Geffert L and Ram, K. 2024. Rgbif: Interface to the global biodiversity information facility API.
  23. Chamberlain, S and Boettiger, C. 2017. ‘R python, and ruby clients for GBIF species occurrence data’. PeerJ PrePrints. DOI: 10.7287/peerj.preprints.3304v1
  24. Childe, VG. 1936. Man Makes Himself. London: Watts & Co.
  25. Colledge, S. 2001. Plant exploitation on Epipalaeolithic and early Neolithic sites in the Levant. BAR International series. Oxford: Oxbow. DOI: 10.30861/9781841711904
  26. Colledge, S, Conolly J and Shennan, S. 2004. ‘Archaeobotanical Evidence for the Spread of Farming in the Eastern Mediterranean’. Current Anthropology, 45(S4): S35S58. DOI: 10.1086/422086
  27. Collins, C, Asouti, E, Grove, M, Kabukcu, C, Bradley L and Chiverrell, R. 2018. ‘Understanding resource choice at the transition from foraging to farming: An application of palaeodistribution modelling to the Neolithic of the Konya Plain, south-central Anatolia, Turkey’. J. Archaeol. Sci., 96: 5772. DOI: 10.1016/j.jas.2018.02.003
  28. Conolly, J, Manning, K, Colledge, S, Dobney K and Shennan, S. 2012. ‘Species distribution modelling of ancient cattle from early Neolithic sites in SW Asia and Europe’. Holocene, 22(9): 9971010. DOI: 10.1177/0959683612437871
  29. Cordova, CE. 2007. Millennial Landscape Change in Jordan: Geoarchaeology and Cultural Ecology. Tucson, AZ: University of Arizona Press. DOI: 10.1353/book.114867
  30. Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray. DOI: 10.5962/bhl.title.68064
  31. David Polly, P and Eronen, JT. 2011. ‘Mammal Associations in the Pleistocene of Britain: Implications of Ecological Niche Modelling and a Method for Reconstructing Palaeoclimate’. In: Ashton, N, Lewis, SG, and Stringer, C (eds.) Developments in Quaternary Sciences. Elsevier. pp. 279304. DOI: 10.1016/B978-0-444-53597-9.00015-7
  32. de Andrés-Herrero, M, Becker D and Weniger, G-C. 2018. ‘Reconstruction of LGM faunal patterns using Species Distribution Modelling. The archaeological record of the Solutrean in Iberia’. Quat. Int., 485: 199208. DOI: 10.1016/j.quaint.2017.10.042
  33. de Candolle, A. 1886. The Origin of Cultivated Plants. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139107365
  34. Dennell, RW. 1976. ‘The economic importance of plant resources represented on archaeological sites’. Journal of Archaeological Science, 3(3): 229247. DOI: 10.1016/0305-4403(76)90057-1
  35. Di Virgilio, G, Wardell-Johnson, GW, Robinson, TP, Temple-Smith D and Hesford, J. 2018. ‘Characterising fine-scale variation in plant species richness and endemism across topographically complex, semi-arid landscapes’. Journal of Arid Environments, 156: 5968. DOI: 10.1016/j.jaridenv.2018.04.005
  36. Diamond, J. 2002. ‘Evolution, consequences and future of plant and animal domestication’. Nature, 418(6898): 700707. DOI: 10.1038/nature01019
  37. Dormann, CF, Elith, J, Bacher, S, Buchmann, C, Carl, G, Carré, G, Marquéz, JRG, Gruber, B, Lafourcade, B, Leitão, PJ, Münkemüller, T, Mclean, C, Osborne, PE, Reineking, B, Schröder, B, Skidmore, AK, Zurell D and Lautenbach, S. 2013. ‘Collinearity: A review of methods to deal with it and a simulation study evaluating their performance’. Ecography, 36(1): 2746. DOI: 10.1111/j.1600-0587.2012.07348.x
  38. Douché, C and Willcox, G. 2018. ‘New archaeobotanical data from the Early Neolithic sites of Dja’de el-Mughara and Tell Aswad (Syria): A comparison between the Northern and the Southern Levant’. Paléorient, 44(2): 4558.
  39. Dubuis, A, Giovanettina, S, Pellissier, L, Pottier, J, Vittoz P and Guisan, A. 2013. ‘Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables’. Journal of Vegetation Science, 24(4): 593606. DOI: 10.1111/jvs.12002
  40. Farr, TG, Rosen, PA, Caro, E, Crippen, R, Duren, R, Hensley, S, Kobrick, M, Paller, M, Rodriguez, E, Roth, L, Seal, D, Shaffer, S, Shimada, J, Umland, J, Werner, M, Oskin, M, Burbank D and Alsdorf, D. 2007. ‘The Shuttle Radar Topography Mission’. Rev. Geophys., 45(2): RG2004. DOI: 10.1029/2005RG000183
  41. Fordham, DA, Saltré, F, Haythorne, S, Wigley, TML, Otto-Bliesner, BL, Chan, KC and Brook, BW. 2017. ‘PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales’. Ecography, 40(11): 13481358. DOI: 10.1111/ecog.03031
  42. Franklin, J and Miller, JA. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press.
  43. Franklin, J, Potts, AJ, Fisher, EC, Cowling, RM and Marean, CW. 2015. ‘Paleodistribution modeling in archaeology and paleoanthropology’. Quat. Sci. Rev., 110: 114. DOI: 10.1016/j.quascirev.2014.12.015
  44. Fuller, DQ. 2010. ‘An emerging paradigm shift in the origins of agriculture’. General Anthropology, 17(2): 112. DOI: 10.1111/j.1939-3466.2010.00010.x
  45. Fuller, DQ and Colledge, S. 2008. ‘Recent lessons from Near Eastern archaeobotany: Wild cereal use, pre-domestication cultivation and tracing multiple origins and dispersals’. Pragdhara, 18: 105134.
  46. Fuller, DQ, Lucas, L, Carretero, LG and Stevens, C. 2018. ‘From intermediate economies to agriculture: Trends in wild food use, domestication and cultivation among early villages in Southwest Asia’. Paléorient, 44(2): 5974.
  47. Fuller, DQ, Willcox G and Allaby, RG. 2011. ‘Cultivation and domestication had multiple origins: Arguments against the core area hypothesis for the origins of agriculture in the Near East’. World Archaeol, 43(4): 628652. DOI: 10.1080/00438243.2011.624747
  48. GBIF. 2025a. GBIF Occurrence Download (14 August 2025). DOI: 10.15468/dl.t8sqqm
  49. GBIF. 2025b. What is GBIF? https://www.gbif.org/what-is-gbif [Last accessed 23 January 2026].
  50. GBIF Secretariat. 2023. GBIF Backbone Taxonomy. DOI: 10.15468/39OMEI
  51. González Carretero, L, Lucas, L, Stevens C and Fuller, DQ. 2023. ‘Investigating early agriculture, plant use and culinary practices at Neolithic Jarmo (Iraqi Kurdistan)’. Journal of Archaeological Science: Reports, 52: 104264. DOI: 10.1016/j.jasrep.2023.104264
  52. Gopher, A, Abbo S and Yadun, SL. 2001. ‘The ‘when’, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant’. Documenta Praehistorica, 28: 4962. DOI: 10.4312/dp.28.3
  53. Guran, SH, Yousefi, M, Kafash A and Ghasidian, E. 2024. ‘Reconstructing contact and a potential interbreeding geographical zone between Neanderthals and anatomically modern humans’. Scientific Reports, 14(1): 20475. DOI: 10.1038/s41598-024-70206-y
  54. Harlan, JR. 1971. ‘Agricultural Origins: Centers and Noncenters’. Science, 174(4008): 468474. DOI: 10.1126/science.174.4008.468
  55. Harlan, JR. 1977. ‘The Origins of Cereal Agriculture in the Old World’. In: Reed, CA (ed.) Origins of Agriculture. De Gruyter Mouton. pp. 357384. DOI: 10.1515/9783110813487.357
  56. Harlan, JR and Zohary, D. 1966. ‘Distribution of Wild Wheats and Barley’. Science, 153(3740): 10741080. DOI: 10.1126/science.153.3740.1074
  57. Harris, DR. 1989. ‘An evolutionary continuum of people–plant interaction’. In: The Emergence of Agriculture. Routledge.
  58. Harris, DR. 1990. ‘Vavilov’s concept of centres of origin of cultivated plants: Its genesis and its influence on the study of agricultural origins’. Biological Journal of the Linnean Society, 39(1): 716. DOI: 10.1111/j.1095-8312.1990.tb01608.x
  59. Harris, DR. 2007. ‘Agriculture, Cultivation and Domestication: Exploring the Conceptual Framework of Early Food Production’. In: Rethinking Agriculture. Routledge.
  60. Harris, DR and Hillman, GC. 1989. ‘Introduction’. In: Foraging and Farming: The Evolution of Plant Exploitation. Routledge.
  61. Hastorf, CA and Popper, VS. 1988. Current Paleoethnobotany: Analytical Methods and Cultural Interpretations of Archaeological Plant Remains. University of Chicago Press.
  62. Helbæk, H. 1959. ‘How farming began in the Old World’. Archaeology, 12(3): 183189.
  63. Helbæk, H. 1969. Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. University of Michigan Ann Arbor.
  64. Hengl, T, de Jesus, JM, MacMillan, RA, Batjes, NH, Heuvelink, GBM, Ribeiro, E, Samuel-Rosa, A, Kempen, B, Leenaars, JGB, Walsh, MG and Gonzalez, MR. 2014. ‘SoilGrids1km–global soil information based on automated mapping’. PLoS One, 9(8): e105992. DOI: 10.1371/journal.pone.0105992
  65. Hengl, T, Men des deJesus, J, Heuvelink, GBM, Ruiperez Gonzalez, M, Kilibarda, M, Blagotić, A, Shangguan, W, Wright, MN, Geng, X, Bauer-Marschallinger, B, Guevara, MA, Vargas, R, MacMillan, RA, Batjes, NH, Leenaars, JGB, Ribeiro, E, Wheeler, I, Mantel S and Kempen, B. 2017. ‘SoilGrids250m: Global gridded soil information based on machine learning’. PLoS One, 12(2): e0169748. DOI: 10.1371/journal.pone.0169748
  66. Hernandez, PA, Graham, CH, Master, LL and Albert, DL. 2006. ‘The effect of sample size and species characteristics on performance of different species distribution modeling methods’. Ecography, 29(5): 773785. DOI: 10.1111/j.0906-7590.2006.04700.x
  67. Heun, M, Schäfer-Pregl, R, Klawan, D, Castagna, R, Accerbi, M, Borghi B and Salamini, F. 1997. ‘Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting’. Science, 278(5341): 13121314. DOI: 10.1126/science.278.5341.1312
  68. Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG and Jarvis, A. 2005. ‘Very high resolution interpolated climate surfaces for global land areas’. Int. J. Climatol., 25(15): 19651978. DOI: 10.1002/joc.1276
  69. Hillman, GC and Davies, MS. 1990. ‘Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications’. Journal of World Prehistory, 4(2): 157222. DOI: 10.1007/BF00974763
  70. Hillman, GC and Davies, MS. 1992. ‘Domestication Rate in Wild Wheats and Barley under Primitive Cultivation: Premiminary Results and Archaeological Implications of Field Measurements of Selection Coefficient’. Monographie du CRA, (6): 113158.
  71. Hillman, G, Hedges, R, Moore, A, Colledge S and Pettitt, P. 2001. ‘New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates’. The Holocene, 11(4): 383393. DOI: 10.1191/095968301678302823
  72. Hopf, M. 1969. ‘Plant remains and early farming in Jericho 1’. In: The Domestication and Exploitation of Plants and Animals. Chicago: Aldine.
  73. Hopf, M. 1986. ‘Archaeological Evidence of the Spread and Use of Some Members of the Leguminosae Family’. In: Barigozzi, C (ed.) Developments in Agricultural and Managed Forest Ecology. The origin and domestication of cultivated plants. Elsevier. pp. 3560. DOI: 10.1016/B978-0-444-42703-8.50008-7
  74. Iob A and Botigué, L. 2023. ‘Genomic analysis of emmer wheat shows a complex history with two distinct domestic groups and evidence of differential hybridization with wild emmer from the western Fertile Crescent’. Vegetation History and Archaeobotany, 32(5): 545558. DOI: 10.1007/s00334-022-00898-7
  75. Jones, MD, Abu-Jaber, N, AlShdaifat, A, Baird, D, Cook, BI, Cuthbert, MO, Dean, JR, Djamali, M, Eastwood, W, Fleitmann, D, Haywood, A, Kwiecien, O, Larsen, J, Maher, LA, Metcalfe, SE, Parker, A, Petrie, CA, Primmer, N, Richter, T, Roberts, N, Roe, J, Tindall, JC, Ünal-İmer E and Weeks, L. 2019. ‘20,000 years of societal vulnerability and adaptation to climate change in southwest Asia’. WIREs Water, 6(2): e1330. DOI: 10.1002/wat2.1330
  76. Karger, DN, Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, RW, Zimmermann, NE, Linder, HP and Kessler, M. 2017. ‘Climatologies at high resolution for the earth’s land surface areas’. Sci Data, 4: 170122. DOI: 10.1038/sdata.2017.122
  77. Karger, DN, Nobis, MP, Normand, S, Graham, CH and Zimmermann, NE. 2023. ‘CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum’. Climate of the Past, 19(2): 439456. DOI: 10.5194/cp-19-439-2023
  78. Kilian, B, Özkan, H, Walther, A, Kohl, J, Dagan, T, Salamini F and Martin, W. 2007. ‘Molecular Diversity at 18 Loci in 321 Wild and 92 Domesticate Lines Reveal No Reduction of Nucleotide Diversity during Triticum monococcum (Einkorn) Domestication: Implications for the Origin of Agriculture’. Molecular Biology and Evolution, 24(12): 26572668. DOI: 10.1093/molbev/msm192
  79. Kirkbride, D. 1966. ‘Five Seasons at the Pre-Pottery Neolithic Village of Beidha In Jordan’. Palestine Exploration Quarterly. DOI: 10.1179/peq.1966.98.1.8
  80. Kislev, ME. 1989. ‘Origins of the cultivation oflathyrus sativus andL. Cicera (fabaceae)’. Economic Botany, 43(2): 262270. DOI: 10.1007/BF02859868
  81. Kopecký, M and Čížková, Š. 2010. ‘Using topographic wetness index in vegetation ecology: Does the algorithm matter?’ Appl. Veg. Sci., 13(4): 450459. DOI: 10.1111/j.1654-109X.2010.01083.x
  82. Kozłowski, SK and Aurenche, O. 2005. Territories, boundaries and cultures in the Neolithic Near East. Archaeopress. DOI: 10.30861/9781841718071
  83. Krzyzanska, M. 2023. Modelling spatio-temporal changes in the ecological niches of major domesticated crops in china: Application of species distribution modelling. PhD thesis. University of Cambridge.
  84. Krzyzanska, M, Hunt, HV, Crema, ER and Jones, MK. 2022. ‘Modelling the potential ecological niche of domesticated buckwheat in China: Archaeological evidence, environmental constraints and climate change’. Vegetation History and Archaeobotany, 31(4): 331345. DOI: 10.1007/s00334-021-00856-9
  85. Kuhn, M and Silge, J. 2022. Tidy Modeling with R: A Framework for Modeling in the Tidyverse. O’Reilly.
  86. Ladizinsky, G and Adler, A. 1976. ‘The origin of chickpea Cicer arietinum L’. Euphytica, 25(1): 211217. DOI: 10.1007/BF00041547
  87. Leempoel, K, Parisod, C, Geiser, C, Daprà, L, Vittoz P and Joost, S. 2015. ‘Very high-resolution digital elevation models: Are multi-scale derived variables ecologically relevant?’ Methods in Ecology and Evolution, 6(12): 13731383. DOI: 10.1111/2041-210X.12427
  88. Lev-Yadun, S, Gopher A and Abbo, S. 2000a. ‘The Cradle of Agriculture’. Science, 288(5471): 16021603. DOI: 10.1126/science.288.5471.1602
  89. Lev-Yadun, S, Gopher A and Abbo, S. 2000b. ‘The Cradle of Agriculture’. Science, 288(5471): 16021603. DOI: 10.1126/science.288.5471.1602
  90. Levy, AA and Feldman, M. 2022. ‘Evolution and origin of bread wheat’. The Plant Cell, 34(7): 25492567. DOI: 10.1093/plcell/koac130
  91. Lindsay, JB. 2016. ‘Whitebox GAT: A case study in geomorphometric analysis’. Comput. Geosci., 95: 7584. DOI: 10.1016/j.cageo.2016.07.003
  92. Liu, C, Berry, PM, Dawson, TP and Pearson, RG. 2005. ‘Selecting thresholds of occurrence in the prediction of species distributions’. Ecography, 28(3): 385393. DOI: 10.1111/j.0906-7590.2005.03957.x
  93. Liu, C, Newell G and White, M. 2016. ‘On the selection of thresholds for predicting species occurrence with presence-only data’. Ecology and Evolution, 6(1): 337348. DOI: 10.1002/ece3.1878
  94. Liu, C, White M and Newell, G. 2013. ‘Selecting thresholds for the prediction of species occurrence with presence-only data’. Journal of Biogeography, 40(4): 778789. DOI: 10.1111/jbi.12058
  95. Luan, J, Zhang, C, Xu, B, Xue Y and Ren, Y. 2020. ‘The predictive performances of random forest models with limited sample size and different species traits’. Fisheries Research, 227: 105534. DOI: 10.1016/j.fishres.2020.105534
  96. Lucas, L and Fuller, D. 2018 Dataset: From intermediate economies to agriculture: Trends in wild food use, domestication and cultivation among early villages in southwest Asia.
  97. Luo, M-C, Yang, Z-L, You, FM, Kawahara, T, Waines, JG and Dvorak, J. 2007. ‘The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication’. Theoretical and Applied Genetics, 114(6): 947959. DOI: 10.1007/s00122-006-0474-0
  98. Maher, LA, Richter T and Stock, JT. 2012. ‘The Pre-Natufian Epipaleolithic: Long-term Behavioral Trends in the Levant’. Evolutionary Anthropology: Issues, News, and Reviews, 21(2): 6981. DOI: 10.1002/evan.21307
  99. Michczyński, A. 2007. ‘Is it Possible to Find a Good Point Estimate of a Calibrated Radiocarbon Date?’ Radiocarbon, 49(2): 393401. DOI: 10.1017/S0033822200042326
  100. Miller, T, Blackwood, CB and Case, AL. 2024. ‘Assessing the utility of SoilGrids250 for biogeographic inference of plant populations’. Ecology and Evolution, 14(3): e10986. DOI: 10.1002/ece3.10986
  101. Mod, HK, Scherrer, D, Luoto M and Guisan, A. 2016. ‘What we use is not what we know: Environmental predictors in plant distribution models’. Journal of Vegetation Science, 27(6): 13081322. DOI: 10.1111/jvs.12444
  102. Molina-Cano, J-L, Russell, JR, Moralejo, MA, Escacena, JL, Arias G and Powell, W. 2005. ‘Chloroplast DNA microsatellite analysis supports a polyphyletic origin for barley’. Theoretical and Applied Genetics, 110(4): 613619. DOI: 10.1007/s00122-004-1878-3
  103. Moore, AMT, Hillman, GC and Legge, AJ. 2000. Village on the Euphrates: From Foraging to Farming at Abu Hureyra. Oxford: Oxford University Press.
  104. Mori, N. 2003. ‘Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting’. In: Proc. 10th. Int. Wheat Genetics Symp., Paestum, Italy, 2003. 2003. pp. 2528.
  105. Ozkan, H, Brandolini, A, Pozzi, C, Effgen, S, Wunder J and Salamini, F. 2005. ‘A reconsideration of the domestication geography of tetraploid wheats’. Theoretical and Applied Genetics, 110(6): 10521060. DOI: 10.1007/s00122-005-1925-8
  106. Özkan, H, Brandolini, A, Schäfer-Pregl R and Salamini, F. 2002. ‘AFLP Analysis of a Collection of Tetraploid Wheats Indicates the Origin of Emmer and Hard Wheat Domestication in Southeast Turkey’. Molecular Biology and Evolution, 19(10): 17971801. DOI: 10.1093/oxfordjournals.molbev.a004002
  107. Özkan, H, Willcox, G, Graner, A, Salamini F and Kilian, B. 2011. ‘Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides)’. Genetic Resources and Crop Evolution, 58(1): 1153. DOI: 10.1007/s10722-010-9581-5
  108. Peake, H and Fleure, HJ. 1927. Corridors of Time III: Peasants and Potters. Oxford: Clarendon Press.
  109. Pumpelly, R. 1908. Explorations in Turkestan. Carnegie Institution Publication 73. Washington, DC: Carnegie Institution.
  110. Purugganan, MD and Fuller, DQ. 2009. ‘The nature of selection during plant domestication’. Nature, 457(7231): 843848. DOI: 10.1038/nature07895
  111. Riehl, S and Kümmel, C. 2005 Archaeobotanical Database Of Eastern Mediterranean And Near Eastern Sites (ADEMNES). https://www.ademnes.de/.
  112. Riehl, S, Zeidi M and Conard, NJ. 2013. ‘Emergence of Agriculture in the Foothills of the Zagros Mountains of Iran’. Science, 341(6141): 6567. DOI: 10.1126/science.1236743
  113. Roberts, N, Woodbridge, J, Bevan, A, Palmisano, A, Shennan S and Asouti, E. 2018. ‘Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean’. Quaternary Science Reviews, 184: 4767. DOI: 10.1016/j.quascirev.2017.09.011
  114. Schreiber, M, Özkan, H, Komatsuda T and Mascher, M. 2021. ‘Evolution and Domestication of Rye’. In: Rabanus-Wallace, MT and Stein, N (eds.) The Rye Genome. Cham: Springer International Publishing. pp. 85100. DOI: 10.1007/978-3-030-83383-1_6
  115. Shennan, SJ and Conolly, J. 2007. Dataset: The Origin and Spread of Neolithic Plant Economies in the Near East and Europe. DOI: 10.5284/1000093
  116. Sillero, N, Arenas-Castro, S, Enriquez-Urzelai, U, Vale, CG, Sousa-Guedes, D, Martínez-Freiría, F, Real, R and Barbosa, AM. 2021. ‘Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling’. Ecological Modelling, 456: 109671. DOI: 10.1016/j.ecolmodel.2021.109671
  117. Smith, BD. 1995. The emergence of agriculture. New York, NY: Scientific American Library.
  118. Stockwell, DRB and Peterson, AT. 2002. ‘Effects of sample size on accuracy of species distribution models’. Ecological Modelling, 148(1): 113. DOI: 10.1016/S0304-3800(01)00388-X
  119. Tanno, K and Willcox, G. 2006. ‘How Fast Was Wild Wheat Domesticated?’ Science, 311(5769): 18861886. DOI: 10.1126/science.1124635
  120. Tanno, K and Willcox, G. 2012. ‘Distinguishing wild and domestic wheat and barley spikelets from early Holocene sites in the Near East’. Vegetation History and Archaeobotany, 21(2): 107115. DOI: 10.1007/s00334-011-0316-0
  121. Townsend Peterson, A and Soberón, J. 2012. ‘Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right’. NatCon, 10(2): 102107. DOI: 10.4322/natcon.2012.019
  122. Valavi, R, Elith, J, Lahoz-Monfort, JJ and Guillera-Arroita, G. 2021. ‘Modelling species presence-only data with random forests’. Ecography, 44(12): 17311742. DOI: 10.1111/ecog.05615
  123. Valavi, R, Guillera-Arroita, G, Lahoz-Monfort, JJ and Elith, J. 2022. ‘Predictive performance of presence-only species distribution models: A benchmark study with reproducible code’. Ecological Monographs, 92(1): e01486. DOI: 10.1002/ecm.1486
  124. van Zeist, W and Bottema, S. 1991. Late Quaternary vegetation of the Near East. Tübinger Atlas des Vorderen Orients, Reihe A (Naturwissenschaften) 18. Wiesbaden: Reichert Verlag.
  125. Vavilov, N. 1926. Studies on the origin of cultivated plants. Leningrad: Institute of Applied Botany and Plant Breeding.
  126. Velazco, SJE, Galvão, F, Villalobos, F and De Marco Júnior, P. 2017. ‘Using worldwide edaphic data to model plant species niches: An assessment at a continental extent’. PloS One, 12(10): e0186025. DOI: 10.1371/journal.pone.0186025
  127. Verhagen, P and Whitley, TG. 2020. ‘Predictive Spatial Modelling’. In: Archaeological Spatial Analysis. Routledge. DOI: 10.4324/9781351243858-13
  128. von Humboldt, A. 1807. Essai sur la géographie des plantes. Paris.
  129. Wallace, M, Jones, G, Charles, M, Forster, E, Stillman, E, Bonhomme, V, Livarda, A, Osborne, CP, Rees, M, Frenck G and Preece, C. 2018. ‘Re-analysis of archaeobotanical remains from pre- and early agricultural sites provides no evidence for a narrowing of the wild plant food spectrum during the origins of agriculture in southwest Asia’. Veg. Hist. Archaeobot. DOI: 10.1007/s00334-018-0702-y
  130. Wallace, M, Livarda, A, Charles M and Jones, G. 2018. Origins of agriculture: Archaeobotanical database. DOI: 10.5284/1046750
  131. Weide, A, Riehl, S, Zeidi M and Conard, NJ. 2017. ‘Reconstructing subsistence practices: Taphonomic constraints and the interpretation of wild plant remains at aceramic Neolithic Chogha Golan, Iran’. Vegetation History and Archaeobotany, 26(5): 487504. DOI: 10.1007/s00334-017-0607-1
  132. Weide, A, Riehl, S, Zeidi M and Conard, NJ. 2018. ‘A systematic review of wild grass exploitation in relation to emerging cereal cultivation throughout the Epipalaeolithic and aceramic Neolithic of the Fertile Crescent’. PLOS ONE, 13(1): e0189811. DOI: 10.1371/journal.pone.0189811
  133. Weiss, E, Kislev, ME and Hartmann, A. 2006. ‘Autonomous Cultivation Before Domestication’. Science, 312(5780): 16081610. DOI: 10.1126/science.1127235
  134. Weiss, E, Wetterstrom, W, Nadel D and Bar-Yosef, O. 2004. ‘The broad spectrum revisited: Evidence from plant remains’. Proceedings of the National Academy of Sciences, 101(26): 95519555. DOI: 10.1073/pnas.0402362101
  135. Whitlam, J, Bogaard, A, Matthews, R, Matthews, W, Mohammadifar, Y, Ilkhani H and Charles, M. 2018. ‘Pre-agricultural plant management in the uplands of the central Zagros: The archaeobotanical evidence from Sheikh-e Abad’. Vegetation History and Archaeobotany, 27(6): 817831. DOI: 10.1007/s00334-018-0675-x
  136. Willcox, G. 2024. ‘Sowing, harvesting and tilling at the end of the Pleistocene/beginning of the Holocene in northern Syria: A reassessment of cereal and pulse exploitation’. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-023-00984-4
  137. Willcox, G, Buxo R and Herveux, L. 2009. ‘Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria’. The Holocene, 19(1): 151158. DOI: 10.1177/0959683608098961
  138. Willcox, G, Fornite S and Herveux, L. 2008. ‘Early Holocene cultivation before domestication in northern Syria’. Vegetation History and Archaeobotany, 17(3): 313325. DOI: 10.1007/s00334-007-0121-y
  139. Wisz, MS, Hijmans, RJ, Li, J, Peterson, AT, Graham, CH, Guisan, A and NCEAS Predicting Species Distributions Working Group. 2008. ‘Effects of sample size on the performance of species distribution models’. Diversity and Distributions, 14(5): 763773. DOI: 10.1111/j.1472-4642.2008.00482.x
  140. Wright, MN and Ziegler, A. 2017. ‘Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R’. Journal of Statistical Software, 77: 117. DOI: 10.18637/jss.v077.i01
  141. Yaworsky, PM, Hussain, ST and Riede, F. 2023. ‘Climate-driven habitat shifts of high-ranked prey species structure Late Upper Paleolithic hunting’. Scientific Reports, 13(1): 4238. DOI: 10.1038/s41598-023-31085-x
  142. Yaworsky, PM, Hussain, ST and Riede, F. 2024. ‘The effects of climate and population on human land use patterns in Europe from 22ka to 9ka ago’. Quaternary Science Reviews, 344: 108956. DOI: 10.1016/j.quascirev.2024.108956
  143. Yaworsky, PM, Nielsen, ES and Nielsen, TK. 2024. ‘The Neanderthal niche space of Western Eurasia 145 ka to 30 ka ago’. Scientific Reports, 14(1): 7788. DOI: 10.1038/s41598-024-57490-4
  144. Yeomans, L, Martin L and Richter, T. 2017. ‘Expansion of the known distribution of Asiatic mouflon (Ovis orientalis) in the Late Pleistocene of the Southern Levant’. Royal Society Open Science, 4(8): 170409. DOI: 10.1098/rsos.170409
  145. Yousefi, M, Heydari-Guran, S, Kafash A and Ghasidian, E. 2020. ‘Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau’. Scientific Reports, 10(1): 14248. DOI: 10.1038/s41598-020-71166-9
  146. Zeder, MA. 2011. ‘The Origins of Agriculture in the Near East’. Curr. Anthropol., 52(S4): S221S235. DOI: 10.1086/659307
  147. Zeder, MA. 2024. ‘Out of the Shadows: Reestablishing the Eastern Fertile Crescent as a Center of Agricultural Origins: Part 1’. Journal of Archaeological Research. DOI: 10.1007/s10814-024-09195-5
  148. Zohary, D. 1969. ‘The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World’. In: The Domestication and Exploitation of Plants and Animals. Routledge.
  149. Zohary, D and Hopf, M. 1973. ‘Domestication of Pulses in the Old World’. Science, 182(4115): 887894. DOI: 10.1126/science.182.4115.887
  150. Zohary, D and Hopf, M. 1988. Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. 1st ed. Oxford: Oxford University Press.
  151. Zohary, D and Spiegel-Roy, P. 1975. ‘Beginnings of Fruit Growing in the Old World’. Science, 187(4174): 319327. DOI: 10.1126/science.187.4174.319
  152. Zohary, D, Weiss E and Hopf, M. 2012. Domestication of Plants in the Old World: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. 4th ed. Oxford: Oxford University Press. DOI: 10.1093/acprof:osobl/9780199549061.001.0001
  153. Zohary, M. 1973. Geobotanical foundations of the Middle East. Stuttgart: Gustav Eischer.
DOI: https://doi.org/10.5334/oq.163 | Journal eISSN: 2055-298X
Language: English
Submitted on: Apr 1, 2025
|
Accepted on: Aug 27, 2025
|
Published on: Feb 3, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Joe Roe, Amaia Arranz-Otaegui, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.