Have a personal or library account? Click to login
Two Centuries of Relative Sea-Level Rise in Dublin, Ireland, Reconstructed by Geological Tide Gauge Cover

Two Centuries of Relative Sea-Level Rise in Dublin, Ireland, Reconstructed by Geological Tide Gauge

Open Access
|Aug 2023

References

  1. 1Allen, JRL. 2000. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19: 11551231. DOI: 10.1016/S0277-3791(99)00034-7
  2. 2Appleby, P. 2001. Chronostratigraphic techniques in recent sediments, Tracking environmental change using lake sediments. Springer, 171203. DOI: 10.1007/0-306-47669-X_9
  3. 3Aquino-López, MA, Blaauw, M, Christen, JA and Sanderson, NK. 2018. Bayesian Analysis of 210Pb Dating. Journal of Agricultural. Biological and Environmental Statistics, 23: 317333. DOI: 10.1007/s13253-018-0328-7
  4. 4Armynot du Châtelet, E, Degre, D, Sauriau, P-G and Debenay, JP. 2009. Distribution of living benthic foraminifera in relation with environmental variables within the Aiguillon cove (Atlantic coast, France): Improving knowledge for paleoecological interpretation. Bulletin De La Societe Geologique De France, 180: 131144. DOI: 10.2113/gssgfbull.180.2.131
  5. 5Barlow, NLM, Long, AJ, Saher, MH, Gehrels, WR, Garnett, MH and Scaife, RG. 2014. Salt-marsh reconstructions of relative sea-level change in the North Atlantic during the last 2000 years. Quaternary Science Reviews, 99: 116. DOI: 10.1016/j.quascirev.2014.06.008
  6. 6Barlow, NLM, Shennan, I, Long, AJ, Gehrels, WR, Saher, MH, Woodroffe, SA and Hillier, C. 2013. Salt marshes as late Holocene tide gauges. Global and Planetary Change, 106: 90110. DOI: 10.1016/j.gloplacha.2013.03.003
  7. 7Barnett, RL, Newton, TL, Charman, DJ and Gehrels, WR. 2017. Salt-marsh testate amoebae as precise and widespread indicators of sea-level change. Earth-Science Reviews, 164: 193207. DOI: 10.1016/j.earscirev.2016.11.002
  8. 8Bateman, MD. 2015. The application of luminescence dating in sea-level studies. In: Shennan, I, Long, AJ and Horton, BP (eds.), Handbook of Sea-Level Research. Chichester: J. Wiley and Sons Ltd. pp. 404417. DOI: 10.1002/9781118452547.ch27
  9. 9Boomer, I. 1998. The relationship between meiofauna (Ostracoda, Foraminifera) and tide levels in modern intertidal environments of North Norfolk: A tool for palaeoenvironmental reconstruction. Bulletin of the Geological Society of Norfolk, 46: 1729.
  10. 10Bradley, SL, Milne, GA, Shennan, I and Edwards, R. 2011. An improved glacial isostatic adjustment model for the British Isles. Journal of Quaternary Science, 26: 541552. DOI: 10.1002/jqs.1481
  11. 11Bradley, SL, Ely, JC, Clark, CD, Edwards, RJ and Shennan, I. 2023. Reconstruction of the palaeo-sea level of Britain and Ireland arising from empirical constraints of ice extent: Implications for regional sea level forecasts and Laurentide ice volume. Journal of Quaternary Science. DOI: 10.1002/jqs.3523
  12. 12Brooks, AJ, Bradley, SL, Edwards, RJ, Milne, GA, Horton, B and Shennan, I. 2008. Postglacial relative sea-level observations from Ireland and their role in glacial rebound modelling. Journal of Quaternary Science, 23: 175192. DOI: 10.1002/jqs.1119
  13. 13Cahill, N, Kemp, AC, Horton, BP and Parnell, AC. 2015. Modeling sea-level change using errors-in-variables integrated Gaussian processes. The Annals of Applied Statistics, 9: 547571. DOI: 10.1214/15-AOAS824
  14. 14Cahill, N, Kemp, AC, Horton, BP and Parnell, AC. 2016. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Clim. Past, 12: 525542. DOI: 10.5194/cp-12-525-2016
  15. 15Camaro Garcia, W, Dwyer, N, Barrett, F, Berry, A, Cronin, M, Cusack, C, Gallagher, S, Gault, J, Gill, M, Gleeson, E, Hanley, J, Kane, P, Lambkin, K, Lawlor, R, Lydon, K, Lyons, K, Martin, D, McCarthy, G, McGovern, E, Murphy, C, Nolan, G, Nugent, C, O’Dwyer, B, Ovadnevaite, J, Quinlan, C, Saunders, M, Silke, J, Smith, G, Thomas, R, Walsh, S, Westbrook, G, Eoin, W and Wilkes, R. 2021. Climate Status Report for Ireland, Tech. rep., EPA. https://www.epa.ie/publications/research/climate-change/Research_Report_386.pdf.
  16. 16Charrad, M, Ghazzali, N, Boiteau, V and Niknafs, A. 2014. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, 61: 136. DOI: 10.18637/jss.v061.i06
  17. 17Coles, BPL. 1977. The Holocene foraminifera and palaeogeography of central Broadland. Unpublished thesis (PhD), University of East Anglia.
  18. 18Coles, BPL and Funnell, BM. 1981. Holocene Palaeoenvironments of Broadland, England. In: Nio, S-D, Shüttenhelm, RTE and Van Weering, TjCE (eds.), Holocene Marine Sedimentation in the North Sea Basin. pp. 123131. DOI: 10.1002/9781444303759.ch9
  19. 19Cott, GM, Jansen, MAK and Chapman, DV. 2012. Salt-Marshes on Peat Substrate: Where Blanket Bogs Encounter the Marine Environment. Journal of Coastal Research, 28: 700706. DOI: 10.2112/JCOASTRES-D-11-00108.1
  20. 20Craven, KF, Edwards, RJ, Goodhue, R and Rocha, C. 2013. Evaluating the influence of selected acid pre-treatment methods on C/N and δ13C of temperate inter-tidal sediments for relative sea level reconstruction. Irish Journal of Earth Sciences, 31: 2542. DOI: 10.3318/IJES.2013.31.5
  21. 21Edwards, R and Horton, B. 2000. Reconstructing relative sea-level change using UK salt-marsh foraminifera. Marine Geology, 169: 4156. DOI: 10.1016/S0025-3227(00)00078-5
  22. 22Edwards, RJ. 2004. Constructing chronologies of sea-level change from salt-marsh sediments. In Buck, CE and Millard, AR (eds.), Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. London: Springer Verlag. pp. 191213. DOI: 10.1007/978-1-4471-0231-1_9
  23. 23Edwards, RJ, Wright, AJ and van de Plassche, O. 2004. Surface distributions of salt-marsh foraminifera from Connecticut, USA: modern analogues for high-resolution sea level studies. Marine Micropaleontology, 51: 121. DOI: 10.1016/j.marmicro.2003.08.002
  24. 24Edwards, RJ and Wright, A. 2015. Foraminifera. In: Handbook of sea-level research. pp. 191217. DOI: 10.1002/9781118452547.ch13
  25. 25Edwards, R, Gehrels, WR, Brooks, A, Fyfe, R, Pullen, K, Kuchar, J and Craven, K. 2017. Resolving discrepancies between field and modelled relative sea-level data: lessons from western Ireland. Journal of Quaternary Science, 32: 957975. DOI: 10.1002/jqs.2969
  26. 26Edwards, RJ. 2023. Sedimentary indicators of relative sea-level changes—Low energy. Encyclopedia of Quaternary Science, 3rd Edition. Elsevier. DOI: 10.1016/B978-0-323-99931-1.00017-9
  27. 27Fox-Kemper, B, Hewitt, HT, Xiao, C, Aðalgeirsdóttir, G, Drijfhout, SS, Edwards, TL, Golledge, NR, Hemer, M, Kopp, RE, Krinner, G, Mix, A, Notz, D, Nowlicki, S, Nurhati, IS, Ruis, L, Sallée, J-B, Slangen, ABA and Yu, Y. 2021. Ocean, Cryosphere and Sea Level Change. In: Masson-Delmotte, V, Zhai, P, Pirani, A, Connors, SL, Péan, C, Berger, S, Caud, N, Chen, Y, Goldfarb, L, Gomis, MI, Huang, M, Leitzell, K, Lonnoy, E, Matthews, JBR, Maycock, TK, Waterfield, T, Yelekçi, O, Yu, R and Zhou, B (eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp. 12111362.
  28. 28Funnell, BM and Boomer, I. 1998. Microbiofacies tidal-level and age deduction in Holocene saltmarsh deposits on the North Norfolk Coast. Bulletin of the Geological Society of Norfolk, 46: 3155.
  29. 29Gehrels, WR. 1999. Middle and Late Holocene Sea-Level Changes in Eastern Maine Reconstructed from Foraminiferal Saltmarsh Stratigraphy and AMS 14C Dates on Basal Peat. Quaternary Research, 52: 350359. DOI: 10.1006/qres.1999.2076
  30. 30Gehrels, WR. 2000. Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Maine, USA. Holocene, 10: 367376. DOI: 10.1191/095968300670746884
  31. 31Gehrels, WR, Kirby, JR, Prokoph, A, Newnham, RM, Achterberg, EP, Evans, H, Black, S and Scott, DB. 2005. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews, 24: 20832100. DOI: 10.1016/j.quascirev.2004.11.016
  32. 32Gehrels, WR and van de Plassche, O. 1999. The use of Jadammina macrescens (Brady) and Balticammina pseudomacrescens Brönnimann, Lutze and Whittaker (Protozoa: Foraminiferida) as sea-level indicators. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 89101. DOI: 10.1016/S0031-0182(98)00194-1
  33. 33Gehrels, WR, Belknap, DF, Black, S and Newnham, RM. 2002. Rapid sea-level rise in the Gulf of Maine, USA, Since AD 1800. The Holocene, 12: 383389. DOI: 10.1191/0959683602hl555ft
  34. 34Gray, J, Jones, S and Smith, AD. 1995. Discharges to the environment from the Sellafield site, 1951–1992. Journal of Radiological Protection, 15: 99. DOI: 10.1088/0952-4746/15/2/001
  35. 35Grey, A, Cunningham, A, Lee, A, Monteys, X, Coveney, S, McCaul, MV, Murphy, BT, McCloughlin, T, Hidaka, B and Kelleher, BP. 2021. Geochemical mapping of a blue carbon zone: Investigation of the influence of riverine input on tidal affected zones in Bull Island. Regional Studies in Marine Science, 45: 101834. DOI: 10.1016/j.rsma.2021.101834
  36. 36Guérin, G, Mercier, N and Adamiec, G. 2011. Dose-rate conversion factors: update. Ancient TL, 29: 58.
  37. 37Guérin, G, Mercier, N, Nathan, R, Adamiec, G and Lefrais, Y. 2012. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiation Measurements, 47: 778785. DOI: 10.1016/j.radmeas.2012.04.004
  38. 38Harris, CR. 1973. The evolution of North Bull Island, Dublin Bay. Unpublished thesis (MSc), Trinity College Dublin.
  39. 39Hawkes, AD, Horton, B, Nelson, A and Hill, D. 2010. The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon, USA. Quaternary International, 221: 116140. DOI: 10.1016/j.quaint.2009.09.019
  40. 40Hogarth, P, Pugh, DT, Hughes, CW and Williams, SDP. 2021. Changes in mean sea level around Great Britain over the past 200 years. Progress in Oceanography, 192: 102521. DOI: 10.1016/j.pocean.2021.102521
  41. 41Horton, BP, Edwards, R and Lloyd, J. 1999. Reconstruction of former sea levels using a foraminiferal-based transfer function. Journal of Foraminiferal Research, 29: 117129. DOI: 10.2113/gsjfr.29.2.117
  42. 42Horton, BP. 1999. The distribution of contemporary intertidal foraminifera at Cowpen Marsh, Tees Estuary, UK: implications for studies of Holocene sea-level changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 127149. DOI: 10.1016/S0031-0182(98)00197-7
  43. 43Horton, BP and Culver, SJ. 2008. Modern intertidal foraminifera of the Outer Banks, North Carolina, USA, and their applicability for sea-level studies. Journal of Coastal Research, 24: 11101125. DOI: 10.2112/08A-0004.1
  44. 44Horton, BP and Edwards, RJ. 2003. Seasonal distributions of foraminifera and their implications for sea-level studies, Cowpen Marsh, UK. In: Olson, HC and Lecjie, M (eds.), Micropaleontologic Proxies for Sea-Level Change and Stratigraphic Discontinuities. DOI: 10.2110/pec.03.75.0021
  45. 45Horton, BP and Edwards, RJ. 2005. The application of local and regional transfer functions to the reconstruction of Holocene sea levels, north Norfolk, England. The Holocene, 15: 216228. DOI: 10.1191/0959683605hl787rp
  46. 46Horton, BP and Edwards, RJ. 2006. Quantifying Holocene sea level change using intertidal foraminifera: lessons from the British Isles. Departmental Papers (EES), 50.
  47. 47Horton, BP, Whittaker, JE, Thomson, KH, Hardbattle, MI, Kemp, A, Woodroffe, SA and Wright, MR. 2005. The development of a modern foraminiferal data set for sea-level reconstructions, Wakatobi Marine National Park, Southeast Sulawesi, Indonesia. The Journal of Foraminiferal Research, 35: 114. DOI: 10.2113/35.1.1
  48. 48Kemp, AC, Horton, BP, Culver, SJ, Corbett, DR, van de Plassche, O, Gehrels, WR, Douglas, BC and Parnell, AC. 2009. Timing and magnitude of recent accelerated sea-level rise (North Carolina, United States). Geology, 37: 10351038. DOI: 10.1073/pnas.1015619108
  49. 49Kemp, AC, Horton, BP, Donnelly, JP, Mann, ME, Vermeer, M and Rahmstorf, S. 2011. Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences, 108: 1101711022. DOI: 10.1073/pnas.1015619108
  50. 50Kemp, AC, Horton, BP, Vann, DR, Engelhart, SE, Grand Pre, CA, Vane, CH, Nikitina, D and Anisfeld, SC. 2012. Quantitative vertical zonation of salt-marsh foraminifera for reconstructing former sea level; an example from New Jersey, USA. Quaternary Science Reviews, 54: 2639. DOI: 10.1016/j.quascirev.2011.09.014
  51. 51Kemp, AC, Telford, RJ, Horton, BP, Anisfeld, SC and Sommerfield, CK. 2013. Reconstructing Holocene sea level using salt-marsh foraminifera and transfer functions: lessons from New Jersey, USA. Journal of Quaternary Science, 28: 617629. DOI: 10.1002/jqs.2657
  52. 52Kemp, AC, Wright, AJ and Cahill, N. 2020. Enough is Enough, or More is More? Testing the Influence of Foraminiferal Count Size on Reconstructions of Paleo-Marsh Elevation. Journal of Foraminiferal Research, 50: 266278. DOI: 10.2113/gsjfr.50.3.266
  53. 53Kemp, AC, Wright, AJ, Edwards, RJ, Barnett, RL, Brain, MJ, Kopp, RE, Cahill, N, Horton, BP, Charman, DJ, Hawkes, AD, Hill, TD and van de Plassche, O. 2018. Relative sea-level change in Newfoundland, Canada during the past ~3000 years. Quaternary Science Reviews, 201: 89110. DOI: 10.1016/j.quascirev.2018.10.012
  54. 54Kemp, AC, Wright, AJ, Barnett, RL, Hawkes, AD, Charman, DJ, Sameshima, C, King, AN, Mooney, HC, Edrwards, RJ, Horton, BP and van de Plassche, O. 2017a. Utility of salt-marsh foraminifera, testate amoebae and bulk-sediment δ13C values as sea-level indicators in Newfoundland, Canada. Marine Micropaleontology, 130: 4359. DOI: 10.1016/j.marmicro.2016.12.003
  55. 55Kemp, AC, Hill, TD, Vane, CH, Cahill, N, Orton, PM, Talke, SA, Parnell, AC, Sanborn, K and Hartig, EK. 2017b. Relative sea-level trends in New York City during the past 1500 years. The Holocene, 27: 11691186. DOI: 10.1177/0959683616683263
  56. 56Kirby, JR, Garrett, E and Gehrels, RW. 2023. Holocene relative sea-level changes in northwest Ireland: An empirical test for glacial isostatic adjustment models. The Holocene. DOI: 10.1177/09596836231169992
  57. 57Kopp, RE, Kemp, AC, Bittermann, K, Horton, BP, Donnelly, JP, Gehrels, WR, Hay, CC, Mitrovica, JX, Morrow, ED and Rahmstorf, S. 2016. Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences, 113: E1434E1441. DOI: 10.1073/pnas.1517056113
  58. 58Kuchar, J, Milne, G, Hubbard, A, Patton, H, Bradley, S, Shennan, I and Edwards, R. 2012. Evaluation of a numerical model of the British–Irish ice sheet using relative sea-level data: implications for the interpretation of trimline observations. Journal of Quaternary Science, 27: 597605. DOI: 10.1002/jqs.2552
  59. 59Lambeck, K. 1996. Glaciation and sea-level change for Ireland and the Irish Sea since Late Devensian/Midlandian time. Journal of the Geological Society, London, 153: 853872. DOI: 10.1144/gsjgs.153.6.0853
  60. 60Long, AJ, Scaife, RG and Edwards, RJ. 2000. Stratigraphic architecture, relative sea-level, and models of estuary development in southern England: new data from Southampton Water. In: Pye, K and Allen, JRL (eds.), Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology. London: Geological Society, Special Publications, 175: 253279. DOI: 10.1144/GSL.SP.2000.175.01.19
  61. 61Maechler, M, Rousseeuw, P, Struyf, A, Hubert, M and Hornik, K. 2012. Cluster: cluster analysis basics and extensions. R package version, 1: 56.
  62. 62Marshall, W. 2015. Chronohorizons: indirect and unique event dating methods for sea-level reconstructions. In: Handbook of Sea-Level Research. Hoboken, NJ: Wiley. pp. 373385. DOI: 10.1002/9781118452547.ch25
  63. 63Massey, AC, Gehrels, WR, Charman, DJ and White, SV. 2006. An intertidal foraminifera-based transfer function for reconstructing Holocene sea-level change in southwest England. Journal of Foraminiferal Research, 36: 215232. DOI: 10.2113/gsjfr.36.3.215
  64. 64Mauz, B, Nolan, PJ and Appleby, PG. 2022. Technical note: Quantifying uranium-series disequilibrium in natural samples for dosimetric dating – Part 1: gamma spectrometry. Geochronology, 4: 213225. DOI: 10.5194/gchron-4-213-2022
  65. 65Mejdahl, V. 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry, 21: 6172. DOI: 10.1111/j.1475-4754.1979.tb00241.x
  66. 66Milker, Y, Horton, B, Nelson, A, Engelhart, S and Witter, R. 2015. Variability of intertidal foraminiferal assemblages in a salt marsh, Oregon, USA. Marine Micropaleontology, 118. DOI: 10.1016/j.marmicro.2015.04.004
  67. 67Murray, AS and Wintle, AG. 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements, 37: 377381. DOI: 10.1016/S1350-4487(03)00053-2
  68. 68Murray, JW. 1991. Ecology and Palaeoecology of Benthic Foraminifera. Harlow, England: Longman Scientific and Technical.
  69. 69Murray, JW. 2000. The enigma of the continued use of total assemblages in ecological studies of benthic foraminfera. Journal of Foraminiferal Research, 30: 244245. DOI: 10.2113/0300244
  70. 70Murray, JW and Bowser, SS. 2000. Mortality, protoplasm decay rate, and reliability of staining techniques to recognize ‘living’foraminifera: a review. The Journal of Foraminiferal Research, 30: 6670. DOI: 10.2113/0300066
  71. 71Murray, JW and Alve, E. 1999. Taphonomic experiments on marginal marine foraminiferal assemblages: how much ecological information is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology, 149: 183197. DOI: 10.1016/S0031-0182(98)00200-4
  72. 72Müller-Navarra, K, Milker, Y and Schmiedl, G. 2017. Applicability of transfer functions for relative sea-level reconstructions in the southern North Sea coastal region based on salt-marsh foraminifera. Marine Micropaleontology, 135: 1531. DOI: 10.1016/j.marmicro.2017.06.003
  73. 73Palmer, M, Howard, T, Tinker, J, Lowe, J, Bricheno, L, Calvert, D, Edwards, T, Gregory, J, Harris, G and Krijnen, J. 2018. UKCP18 marine report.
  74. 74Pannozzo, N, Smedley, RK, Chiverrell, RC, Carnacina, I and Leonardi, N. 2022. An integration of numerical modeling and paleoenvironmental analysis reveals the effects of embankment construction on long-term salt marsh accretion. Journal of Geophysical Research: Earth Surface, 127. DOI: 10.1029/2021JF006524
  75. 75Peltier, WR, Argus, D and Drummond, R. 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120: 450487. DOI: 10.1002/2014JB011176
  76. 76Phleger, FB. 1970. Foraminiferal populations and marine marsh processes. Limnology and Oceanography, 15: 522534. DOI: 10.4319/lo.1970.15.4.0522
  77. 77Plater, A, Ridgway, J, Rayner, B, Shennan, I, Horton, B, Haworth, EY, Wright, MR, Rutherford, MM and Wintle, AG. 2000. Sediment provenance and flux in the Tees Estuary: The record from the Late Devensian to the present. Geological Society, London, Special Publications, 166: 171195. DOI: 10.1144/GSL.SP.2000.166.01.10
  78. 78Plater, AJ, Kirby, JR, Boyle, JF, Shaw, T and Mills, H. 2015. Loss on ignition and organic content. In: Shennan, I, Long, AJ and Horton, BP (eds.), Handbook of Sea-Level Research. Chichester: J. Wiley and Sons Ltd. pp. 312330. DOI: 10.1002/9781118452547.ch21
  79. 79Pugh, DT, Bridge, E, Edwards, R, Hogarth, P, Westbrook, G, Woodworth, PL and McCarthy, GD. 2021. Mean sea level and tidal change in Ireland since 1842: A case study of Cork. Ocean Sci, 17: 16231637. DOI: 10.5194/os-17-1623-2021
  80. 80Rahman, R, Plater, AJ, Nolan, PJ, Mauz, B and Appleby, PG. 2013. Potential health risks from radioactive contamination of saltmarshes in NW England. Journal of Environmental Radioactivity, 119: 5562. DOI: 10.1016/j.jenvrad.2011.11.011
  81. 81Rose, NL. 1990. A method for the extraction of carbonaceous particles from lake sediment. Journal of Paleolimnology, 3: 4553. DOI: 10.1007/BF00209299
  82. 82Rose, NL. 1994. A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments. Journal of Paleolimnology, 11: 201204. DOI: 10.1007/BF00686866
  83. 83Rose, NL and Appleby, PG. 2005. Regional Applications of Lake Sediment Dating by Spheroidal Carbonaceous Particle Analysis I: United Kingdom. Journal of Paleolimnology, 34: 349361. DOI: 10.1007/s10933-005-4925-4
  84. 84Rosenheim, BE, Day, MB, Domack, E, Schrum, H, Benthien, A and Hayes, JM. 2008. Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment. Geochemistry, Geophysics, Geosystems, 9. DOI: 10.1029/2007GC001816
  85. 85Rosenheim, BE, Santoro, JA, Gunter, M and Domack, EW. 2013. Improving Antarctic Sediment 14C Dating Using Ramped Pyrolysis: An Example from the Hugo Island Trough. Radiocarbon, 55: 115126. DOI: 10.2458/azu_js_rc.v55i1.16234
  86. 86Rush, G, McDarby, P, Edwards, R, Milker, Y, Garrett, E and Gehrels, WR. 2021. Development of an intertidal foraminifera training set for the North Sea and an assessment of its application for Holocene sea-level reconstructions. Marine Micropaleontology, 169: 102055. DOI: 10.1016/j.marmicro.2021.102055
  87. 87Saher, MH, Gehrels, WR, Barlow, NLM, Long, AJ, Haigh, ID and Blaauw, M. 2015. Sea-level changes in Iceland and the influence of the North Atlantic Oscillation during the last half millennium. Quaternary Science Reviews, 108: 2336. DOI: 10.1016/j.quascirev.2014.11.005
  88. 88Scott, DB. 1976. Brackish-water foraminifera from southern California and description of Polysaccammina ipohalina n. gen, n. sp. Journal of Foraminiferal Research, 6: 312321. DOI: 10.2113/gsjfr.6.4.312
  89. 89Scott, DB and Hermelin, JOR. 1993. A Device for Precision Splitting of Micropaleontological Samples in Liquid Suspension. Journal of Paleontology, 67: 151154. DOI: 10.1017/S0022336000021302
  90. 90Scott, DB and Medioli, FS. 1980. Quantitative Studies of Marsh Foraminiferal Distributions in Nova Scotia: Implications for Sea Level Studies. Cushman Foundation for Foraminiferal Research.
  91. 91Scott, DB, Schnack, EJ, Ferrero, L, Espinosa, M and Barbosa, CF. 1990. Recent marsh foraminifera from the east coast of South America: comparison to the northern hemisphere, Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated foraminifera. Springer. 717737. DOI: 10.1007/978-94-011-3350-0_25
  92. 92Scott, DS and Medioli, FS. 1978. Vertical zonations of marsh foraminifera as accurate indicators of former sea-levels. Nature, 272: 528531. DOI: 10.1038/272528a0
  93. 93Shoari Nejad, A, Parnell, AC, Greene, A, Thorne, P, Kelleher, BP, Devoy, RJN and McCarthy, G. 2022. A newly reconciled dataset for identifying sea level rise and variability in Dublin Bay. Ocean Sci, 18: 511522. DOI: 10.5194/os-18-511-2022
  94. 94Smith, DA, Scott, DB and Medioli, FS. 1984. Marsh foraminifera in the Bay of Fundy: modern distribution and application to sea-level determinations. Atlantic Geoscience, 20. DOI: 10.4138/1581
  95. 95Suzuki, K, Yamamoto, M, Rosenheim, BE, Omori, T and Polyak, L. 2021. New radiocarbon estimation method for carbonate-poor sediments: A case study of ramped pyrolysis 14C dating of postglacial deposits from the Alaskan margin, Arctic Ocean. Quaternary Geochronology, 66: 101215. DOI: 10.1016/j.quageo.2021.101215
  96. 96Swindles, GT, Galloway, JM, Macumber, AL, Croudace, IW, Emery, AR, Woulds, C, Bateman, MD, Parry, L, Jones, JM, Selby, K, Rushby, GT, Baird, AJ, Woodroffe, SA and Barlow, NLM. 2018. Sedimentary records of coastal storm surges: Evidence of the 1953 North Sea event. Marine Geology, 403: 262270. DOI: 10.1016/j.margeo.2018.06.013
  97. 97Troels-Smith, J. 1955. Karakterisering af løse jordarter. Danmarks Geologiske Undersøgelse IV. Række, 3: 173. DOI: 10.34194/raekke4.v3.6989
  98. 98Tsompanoglou, K, Croudace, IW, Birch, H and Collins, M. 2010. Geochemical and radiochronological evidence of North Sea storm surges in salt marsh cores from The Wash embayment (UK). The Holocene, 21: 225236. DOI: 10.1177/0959683610378878
  99. 99Walker, JS, Cahill, N, Khan, NS, Shaw, TA, Barber, D, Miller, KG, Kopp, RE and Horton, BP. 2020. Incorporating temporal and spatial variability of salt-marsh foraminifera into sea-level reconstructions. Marine Geology, 429: 106293. DOI: 10.1016/j.margeo.2020.106293
  100. 100Walker, JS, Kopp, RE, Shaw, TA, Cahill, N, Khan, NS, Barber, DC, Ashe, EL, Brain, MJ, Clear, JL, Corbett, DR and Horton, BP. 2021. Common Era sea-level budgets along the US Atlantic coast. Nature Communications, 12(1): 1841. DOI: 10.1038/s41467-021-22079-2
  101. 101Walker, JS, Kopp, RE, Little, CM and Horton, BP. 2022. Timing of emergence of modern rates of sea-level rise by 1863. Nature Communications, 13: 966. DOI: 10.1038/s41467-022-28564-6
  102. 102Walton, WR. 1952. Techniques for recognition of living foraminifera. Cushman Found, Foram. Res. Contr, 3: 5660.
  103. 103Wright, AJ, Edwards, RJ and van de Plassche, O. 2011. Reassessing transfer-function performance in sea-level reconstruction based on benthic salt-marsh foraminifera from the Atlantic coast of NE North America. Marine Micropaleontology, 81: 4362. DOI: 10.1016/j.marmicro.2011.07.003
DOI: https://doi.org/10.5334/oq.121 | Journal eISSN: 2055-298X
Language: English
Submitted on: Mar 27, 2023
Accepted on: Jul 22, 2023
Published on: Aug 22, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Zoë A. Roseby, Katherine Southall, Fermin Alvarez-Agoues, Niamh Cahill, Gerard D. McCarthy, Robin J. Edwards, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.