References
- 1Avogadro R, Cremaschi M. Mantistable v: A novel and efficient approach to semantic table interpretation. In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2021), Vol. 3103 of CEUR Workshop Proceedings.
CEUR-WS.org ; 2021. pp. 79–91. - 2Avogadro R, D’Adda F, Cremaschi M. Feature/vector entity retrieval and disambiguation techniques to create a supervised and unsupervised semantic table interpretation approach. Knowledge-Based Systems. 2024;304:112447. DOI: 10.1016/j.knosys.2024.112447
- 3Brooke J.
SUS: A ‘quick and dirty’ usability scale . In: Jordan PW, Thomas B, Weerdmeester BA, McClelland IL, editors. Usability Evaluation in Industry. London, UK: Taylor & Francis; 1996. pp. 189–194. - 4Cremaschi M, Avogadro R, Barazzetti A, Chieregato D, Jiménez-Ruiz E.
Mantistable se: an efficient approach for the semantic table interpretation . In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2020), Vol. 2775 of CEUR Workshop Proceedings.CEUR-WS.org , Cham; 2020. pp. 75–85. - 5Cremaschi M, Avogadro R, Chieregato D. Mantistable: an automatic approach for the semantic table interpretation. In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching co-located with the 18th International Semantic Web Conference (SemTab@ISWC 2019), Vol. 2553 of CEUR Workshop Proceedings.
CEUR-WS.org ; 2019. pp. 15–24. - 6Cremaschi M, Avogadro R, Chieregato D. s-elbat: a semantic interpretation approach for messy table-s. In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching co-located with the 21st International Semantic Web Conference (SemTab@ISWC 2022), Vol. 3320 of CEUR Workshop Proceedings.
CEUR-WS.org ; 2022. pp. 59–71. - 7Cremaschi M, Barbato JA, Rula A, Palmonari M, Actis-Grosso R. What really matters in a table? insights from a user study. In: 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT); 2022. pp. 263–269. DOI: 10.1109/WI-IAT55865.2022.00045
- 8Cremaschi M, De Paoli F, Rula A, Spahiu B. A fully automated approach to a complete semantic table interpretation. Future Generation Computer Systems. 2020;112:478–500. DOI: 10.1016/j.future.2020.05.019
- 9Cutrona V, Ciavotta M, De Paoli F, Palmonari M. Asia: a tool for assisted semantic interpretation and annotation of tabular data. In: Proceedings of the ISWC 2019 Satellite Events, Vol. 2456 of CEUR Workshop Proceedings.
CEUR-WS.org ; 2019. pp. 209–212. - 10Ferreira JM, Acuña ST, Dieste O, Vegas S, Santos A, Rodríguez F, Juristo N. Impact of usability mechanisms: An experiment on efficiency, effectiveness and user satisfaction. Information and Software Technology. 2020;117:106195. DOI: 10.1016/j.infsof.2019.106195
- 11Gupta S, Szekely P, Knoblock CA, Goel A, Taheriyan M, Muslea M.
Karma: A system for mapping structured sources into the semantic web . In: The Semantic Web: ESWC 2012 Satellite Events, Vol. 7540 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg; 2015. pp. 430–434. DOI: 10.1007/978-3-662-46641-4_40 - 12Lewis JR, Sauro J. Item benchmarks for the system usability scale. Journal of Usability Studies. 2018;13(3):158–167.
- 13Mazumdar S, Zhang Z. Visualizing semantic table annotations with tableminer+. In: Proceedings of the ISWC 2016 Posters & Demos Track, Vol. 1690 of CEUR Workshop Proceedings.
CEUR-WS.org ; 2016. p. 88. - 14Narducci F, Palmonari M, Semeraro G. Cross-lingual link discovery with tr-esa. Information Sciences. 2017;394–395:68–87. DOI: 10.1016/j.ins.2017.02.019
- 15Nguyen P, Yamada I, Kertkeidkachorn N, Ichise R, Takeda H. Semtab 2021: Tabular data annotation with mtab tool. In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab 2021), Vol. 3103 of CEUR Workshop Proceedings.
CEUR-WS.org ; 2021. pp. 92–101. - 16Pomp A, Paulus A, Jeschke S, Meisen T. Eskape: Platform for enabling semantics in the continuously evolving internet of things. In: 2017 IEEE 11th International Conference on Semantic Computing (ICSC). San Diego, CA, USA:
IEEE Computer Society ; 2017. pp. 262–263. DOI: 10.1109/ICSC.2017.45 - 17Ripamonti M, De Paoli F, Palmonari M. Semtui: a framework for the interactive semantic enrichment of tabular data. arXiv preprint arXiv:2203.09521. 2022;abs/2203.09521.
- 18Roman D, Dimitrov M, Nikolov N, Putlier A, Sukhobok D, Elvesæter B, Berre A, Ye X, Simov A, Petkov Y.
Datagraft: Simplifying open data publishing . In: The Semantic Web: ESWC 2016 Satellite Events, Vol. 9989 of Lecture Notes in Computer Science. Cham, Switzerland: Springer International Publishing; 2016. pp. 101–106. DOI: 10.1007/978-3-319-47602-5_21 - 19Sarthou-Camy C, Jourdain G, Chabot Y, Monnin P, Deuzé F, Huynh V-P, Liu J, Labbé T, Troncy R.
Dagobah ui: A new hope for semantic table interpretation . In: The Semantic Web: ESWC 2022 Satellite Events, Vol. 13384 of Lecture Notes in Computer Science. Hersonissos, Greece: Springer International Publishing; 2022. pp. 107–111. DOI: 10.1007/978-3-031-11609-4_20 - 20Steenwinckel B, De Turck F, Ongenae F. Magic: Mining an augmented graph using ink, starting from a csv. In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching co-located with ISWC 2021, Vol. 3103 of CEUR Workshop Proceedings.
CEUR-WS.org , Virtual event; 2021. pp. 68–78. - 21Weichbroth P. Usability testing of mobile applications: A methodological framework. Applied Sciences. 2024;14(5):1792. DOI: 10.3390/app14051792
- 22Zamini M, Reza H, Rabiei M. A review of knowledge graph completion. Information. 2022;13(8). DOI: 10.3390/info13080396
