Have a personal or library account? Click to login
CESER: An R Package to Compute Cluster Estimated Standard Errors Cover

CESER: An R Package to Compute Cluster Estimated Standard Errors

By: Diogo Ferrari  
Open Access
|Nov 2021

References

  1. Bertrand M, Duflo E, Mullainathan S. How much should we trust differences-in-differences estimates? The Quarterly journal of economics, 2004; 119(1): 249275. DOI: 10.1162/003355304772839588
  2. Cameron AC, Gelbach JB, Miller DL. Bootstrap-based improvements for inference with clustered errors. The Review of Economics and Statistics, 2008; 90(3): 414427. DOI: 10.1162/rest.90.3.414
  3. Chambers JM. Linear models. In Chambers JM, Hastie TJ (Eds.), Statistical Models in S, chapter 4. Wadsworth Brooks/Cole; 1992.
  4. Djogbenou AA, MacKinnon JG, Nielsen M∅. Asymptotic theory and wild bootstrap inference with clustered errors. Journal of Econometrics, 2019; 212(2): 393412. DOI: 10.1016/j.jeconom.2019.04.035
  5. Eicker F. Limit theorems for regressions with unequal and dependent errors. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967; 1: 5982.
  6. Elgie R, Bucur C, Dolez B, Laurent A. Proximity, candidates, and presidential power: How directly elected presidents shape the legislative party system. Political Research Quarterly, 2014; 67(3): 467477. DOI: 10.1177/1065912914530514
  7. Esarey J, Menger A. Practical and effective approaches to dealing with clustered data. Political Science Research and Methods, 2018; 119. DOI: 10.1017/psrm.2017.42
  8. Greene WH. Econometric analysis. Upper Saddle River, NJ: Pearson Prentice Hall; 2012.
  9. Harden JJ. A bootstrap method for conducting statistical inference with clustered data. State Politics & Policy Quarterly, 2011; 11(2): 223246. DOI: 10.1177/1532440011406233
  10. Hayes AF, Cai L. Using heteroskedasticity-consistent standard error estimators in ols regression: An introduction and software implementation. Behavior research methods, 2007; 39(4): 709722. DOI: 10.3758/BF03192961
  11. Imbens GW, Kolesar M. Robust standard errors in small samples: Some practical advice. Review of Economics and Statistics, 2016; 98(4): 701712. DOI: 10.1162/REST_a_00552
  12. Jackson J. Corrected standard errors with clustered data. Political Analysis, 2020; 28(3): 318339. DOI: 10.1017/pan.2019.38
  13. Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika, 1986; 73(1): 1322. DOI: 10.1093/biomet/73.1.13
  14. MacKinnon JG. How cluster-robust inference is changing applied econometrics. Canadian Journal of Economics, 2019; 52(3): 851881. DOI: 10.1111/caje.12388
  15. MacKinnon JG, Webb MD. Wild bootstrap inference for wildly different cluster sizes. Journal of Applied Econometrics, 2017; 32(2): 233254. DOI: 10.1002/jae.2508
  16. Pustejovsky J. clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections. R package version 0.5.3; 2021.
  17. Pustejovsky JE, Tipton E. Small-sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. Journal of Business & Economic Statistics, 2018; 36(4): 672683. DOI: 10.1080/07350015.2016.1247004
  18. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
  19. Roodman D, Nielsen, M∅, MacKinnon JG, Webb MD. Fast and wild: Bootstrap inference in stata using boottest. The Stata Journal, 2019; 19(1): 460. DOI: 10.1177/1536867X19830877
  20. White HL. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 1980; 48(4): 817838. DOI: 10.2307/1912934
  21. Wilkinson GN, Rogers CE. Symbolic descriptions of factorial models for analysis of variance. Applied Statistics, 1973; 22: 3929. DOI: 10.2307/2346786
  22. Zeileis A. Econometric computing with hc and hac covariance matrix estimators; 2004. DOI: 10.18637/jss.v011.i10
DOI: https://doi.org/10.5334/jors.355 | Journal eISSN: 2049-9647
Language: English
Submitted on: Oct 19, 2020
|
Accepted on: Oct 6, 2021
|
Published on: Nov 30, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Diogo Ferrari, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.