Have a personal or library account? Click to login
CESER: An R Package to Compute Cluster Estimated Standard Errors Cover

CESER: An R Package to Compute Cluster Estimated Standard Errors

By: Diogo Ferrari  
Open Access
|Nov 2021

Figures & Tables

Table 1

Comparing raw standard errors, CRSE, and CESE.

COVARIATESTD. ERRORS
ESTIMATERAWCRSEHC1CRSEHC3CESE
(Intercept)2.70430.58480.48860.61351.2641
enpc0.30400.18890.25170.30500.3542
fapres–0.61180.16540.20380.27270.3784
enpcfapres0.20780.06040.08260.10390.1127
proximity–0.02240.27860.25440.32080.3738
eneg–0.06570.14790.14150.16590.1986
logmag–0.18150.24630.43870.52290.4737
logmag_eneg0.36050.13340.28830.34730.2463
COVARIATECONFIDENCE INTERVALS
ESTIMATERAWCRSEHC1CRSEHC3CESE
(Intercept)2.7043(1.558, 3.85)(1.747, 3.662)(1.502, 3.907)(0.227, 5.182)
enpc0.3040(–0.066, 0.674)(–0.189, 0.797)(–0.294, 0.902)(–0.39, 0.998)
fapres–0.6118(–0.936, –0.288)(–1.011, –0.212)(–1.146, –0.077)(–1.354, 0.13)
enpcfapres0.2078(0.089, 0.326)(0.046, 0.37)(0.004, 0.411)(–0.013, 0.429)
proximity–0.0224(–0.568, 0.524)(–0.521, 0.476)(–0.651, 0.606)(–0.755, 0.71)
eneg–0.0657(–0.356, 0.224)(–0.343, 0.212)(–0.391, 0.259)(–0.455, 0.324)
logmag–0.1815(–0.664, 0.301)(–1.041, 0.678)(–1.206, 0.843)(–1.11, 0.747)
logmag_eneg0.3605(0.099, 0.622)(–0.205, 0.926)(–0.32, 1.041)(–0.122, 0.843)
(Intercept)enpcfapresenpcfapresproximity
(Intercept)0.34193–0.080109–0.064987170.0227605–0.0416369
enpc–0.080110.0356970.02401318–0.01028250.0059204
fapres–0.064990.0240130.02734250–0.0090018–0.0004345
enpcfapres0.02276–0.010283–0.009001790.0036430–0.0014388
proximity–0.041640.005920–0.00043452–0.00143880.0776196
eneg–0.03580–0.001477–0.002517850.0007025–0.0039084
logmag–0.05448–0.0069810.000174200.0021400–0.0023836
logmag_eneg0.025320.001833–0.00007513–0.0007721–0.0009086
eneglogmaglogmag_eneg
(Intercept)–0.0358050–0.05448260.02532042
enpc–0.0014768–0.00698090.00183259
fapres–0.00251790.0001742–0.00007513
enpcfapres0.00070250.0021400–0.00077214
proximity–0.0039084–0.0023836–0.00090860
eneg0.02188560.0222887–0.01190289
logmag0.02228870.0606796–0.02995518
logmag_eneg–0.0119029–0.02995520.01778317
(Intercept)enpcfapresenpcfapresproximity
(Intercept)0.376409–0.0929549–0.066200.022499–0.0315432
enpc–0.0929550.09303270.05081–0.0268470.0000196
fapres–0.0661980.05080800.07437–0.024184–0.0177849
enpcfapres0.022499–0.0268474–0.024180.0107850.0020836
proximity–0.0315430.0000196–0.017780.0020840.1029317
eneg0.001905–0.0165885–0.021830.007097–0.0200007
logmag–0.030573–0.0642203–0.049450.022924–0.0285040
logmag_eneg–0.0020750.01240100.02094–0.0072290.0317879
eneglogmaglogmag_eneg
(Intercept)0.001905–0.03057–0.002075
enpc–0.016589–0.064220.012401
fapres–0.021832–0.049450.020940
enpcfapres0.0070970.02292–0.007229
proximity–0.020001–0.028500.031788
eneg0.0275190.06041–0.039241
logmag0.0604130.27344–0.158061
logmag_eneg–0.039241–0.158060.120629
(Intercept)enpcfapresenpcfapresproximity
(Intercept)1.59804–0.3565890–0.3260450.0928614–0.086959
enpc–0.356590.12547350.104834–0.0354704–0.003333
fapres–0.326040.10483420.143206–0.0389794–0.017879
enpcfapres0.09286–0.0354704–0.0389790.01269780.003218
proximity–0.08696–0.0033328–0.0178790.00321790.139695
eneg–0.087370.0028258–0.0070810.0010940–0.005680
logmag–0.224220.00098450.0066880.00380800.009776
logmag_eneg0.08381–0.0058250–0.0115000.00085690.004472
eneglogmaglogmag_eneg
(Intercept)–0.087372–0.22422350.0838093
enpc0.0028260.0009845–0.0058250
fapres–0.0070810.0066880–0.0115004
enpcfapres0.0010940.00380800.0008569
proximity–0.0056800.00977610.0044718
eneg0.0394330.0481561–0.0231003
logmag0.0481560.2244237–0.1048418
logmag_eneg–0.023100–0.10484180.0606626
(Intercept)enpcfapresenpcfapresproximity
0.584750.188940.165360.060360.27860
eneglogmaglogmag_eneg
0.147940.246330.13335
(Intercept)enpcfapresenpcfapresproximity
0.61350.30500.27270.10390.3208
eneglogmaglogmag_eneg
0.16590.52290.3473
(Intercept)enpcfapresenpcfapresproximity
1.26410.35420.37840.11270.3738
eneglogmaglogmag_eneg
0.19860.47370.2463
Min1QMedian3QMax
–3.559–0.819–0.3610.3779.039
EstimateStd.Errort valuePr (>|t|)
(Intercept)2.70430.58484.620.0000056***
enpc0.30400.18891.610.10871
fapres–0.61180.1654–3.700.00026***
enpcfapres0.20780.06043.440.00066***
proximity–0.02240.2786–0.080.93589
eneg–0.06570.1479–0.440.65748
logmag–0.18150.2463–0.740.46193
logmag_eneg0.36050.13342.700.00727**
–--
EstimateStd.Errort valuePr(>|t|)
(Intercept)2.70430.61354.410.000015***
enpc0.30400.30501.000.320
fapres–0.61180.2727–2.240.026*
enpcfapres0.20780.10392.000.046*
proximity–0.02240.3208–0.070.944
eneg–0.06570.1659–0.400.693
logmag–0.18150.5229–0.350.729
logmag_eneg0.36050.34731.040.300
–--
EstimateStd.Errort valuePr (>|t|)
(Intercept)2.70431.26412.140.033*
enpc0.30400.35420.860.391
fapres–0.61180.3784–1.620.107
enpcfapres0.20780.11271.840.066.
proximity–0.02240.3738–0.060.952
eneg–0.06570.1986–0.330.741
logmag–0.18150.4737–0.380.702
logmag_eneg0.36050.24631.460.144
–--
DOI: https://doi.org/10.5334/jors.355 | Journal eISSN: 2049-9647
Language: English
Submitted on: Oct 19, 2020
|
Accepted on: Oct 6, 2021
|
Published on: Nov 30, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Diogo Ferrari, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.