Have a personal or library account? Click to login
Python Battery Mathematical Modelling (PyBaMM) Cover

Python Battery Mathematical Modelling (PyBaMM)

Open Access
|Jun 2021

References

  1. 1EPSRC Press Office. Greg Clark announces Faraday Institution, October 2017. epsrc.ukri.org/newsevents/news/faradayinstitution/. [Online; accessed 11-September-2019].
  2. 2COMSOL Inc. COMSOL multiphysics reference manual, version 5.4. www.comsol.com.
  3. 3Newman J. FORTRAN programs for the simulation of electrochemical systems. www.cchem.berkeley.edu/jsngrp/fortran.html.
  4. 4Moura SJ. Fast doyle-fuller-newman (DFN) electrochemical-thermal battery model simulator. github.com/scott-moura/fastDFN.
  5. 5Torchio M, Magni L, Gopaluni RB, Braatz RD, Raimondo DM. LION-SIMBA: A matlab framework based on a finite volume model suitable for li-ion battery design, simulation, and control. Journal of The Electrochemical Society. 2016; 163(7): A1192A1205. DOI: 10.1149/2.0291607jes
  6. 6Smith RB, Bazant MZ. Multiphase porous electrode theory. Journal of The Electrochemical Society. 2017; 164(11): E3291E3310. DOI: 10.1149/2.0171711jes
  7. 7Marquis SG, Sulzer V, Timms R, Please CP, Chapman SJ. An asymptotic derivation of a single particle model with electrolyte. Journal of The Electrochemical Society. 2019; 166(15): A3693. DOI: 10.1149/2.0341915jes
  8. 8Sulzer V, Chapman SJ, Please CP, Howey DA, Monroe CW. Faster lead-acid battery simulations from porous-electrode theory: Part I. Physical model. Journal of The Electrochemical Society. 2019; 166(12): A2363–A2371. DOI: 10.1149/2.0301910jes
  9. 9Sulzer V, Chapman SJ, Please CP, Howey DA, Monroe CW. Faster leadacid battery simulations from porous-electrode theory: Part II. Asymptotic analysis. Journal of The Electrochemical Society. 2019; 166(12): A2372–A2382. DOI: 10.1149/2.0441908jes
  10. 10Chen CH, Brosa Planella F, O’Regan K, Gastol D, Widanage WD, Kendrick E. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society. 2020; 167(8): 080534. DOI: 10.1149/1945-7111/ab9050
  11. 11Tranter TG, Timms R, Heenan TMM, Marquis SG, Sulzer V, Jnawali A, Kok MDR, Please CP, Chapman SJ, Shearing PR, et al. Probing heterogeneity in li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains. Journal of The Electrochemical Society. 2020; 167(11): 110538. DOI: 10.1149/1945-7111/aba44b
  12. 12Marquis SG, Timms R, Sulzer V, Please CP, Chapman SJ. A suite of reduced-order models of a single-layer lithium-ion pouch cell. Journal of The Electrochemical Society. 2020; 167(14): 140513. DOI: 10.1149/1945-7111/abbce4
  13. 13Timms R, Marquis SG, Sulzer V, Please CP, Chapman SJ. Asymptotic reduction of a lithium-ion pouch cell model. arXiv preprint arXiv:2005.05127, 2020. https://arxiv.org/abs/2005.05127.
  14. 14Salinas F, Kowal J. Discharge rate capability in aged li-ion batteries. Journal of the Electrochemical Society. 2020. DOI: 10.1149/1945-7111/abc207
  15. 15Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, et al. Array programming with NumPy. Nature. 2020; 585(7825): 357362. DOI: 10.1038/s41586-020-2649-2
  16. 16Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nature methods. 2020; 17(3): 261272. DOI: 10.1038/s41592-019-0686-2
  17. 17The pandas development team. pandas-dev/pandas: Pandas, February 2020. DOI: 10.5281/zenodo.3509134
  18. 18Hunter JD. Matplotlib: A 2D graphics environment. Computing in Science & Engineering. 2007; 9(3): 9095. DOI: 10.1109/MCSE.2007.55
  19. 19Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C, Jupyter development team. Jupyter notebooks - a publishing format for reproducible computational workflows. In Loizides F, Scmidt B (eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas, pages 8790, Netherlands, 2016. IOS Press. DOI: 10.3233/978-1-61499-649-1-87
  20. 20Hindmarsh AC. The PVODE and IDA algorithms. Technical report, Lawrence Livermore National Lab., CA (US), 2000. DOI: 10.2172/802599
  21. 21Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS. SUNDIALS: Suite of nonlinear and di_erential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS). 2005; 31(3): 363396. DOI: 10.1145/1089014.1089020
  22. 22Malengier B, Kišon P, Tocknell J, Abert C, Bruckner F, Bisotti M-A. ODES: a high level interface to ODE and DAE solvers. The Journal of Open Source Software. Feb 2018; 3(22): 165. DOI: 10.21105/joss.00165
  23. 23Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation. 2019; 11(1): 136. DOI: 10.1007/s12532-018-0139-4
  24. 24Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Wanderman-Milne S. JAX: composable transformations of Python+NumPy programs, 2018. github.com/google/jax.
DOI: https://doi.org/10.5334/jors.309 | Journal eISSN: 2049-9647
Language: English
Submitted on: Nov 5, 2019
Accepted on: Apr 13, 2021
Published on: Jun 8, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Valentin Sulzer, Scott G. Marquis, Robert Timms, Martin Robinson, S. Jon Chapman, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.