References
- Altintas, I, Berkley, C, Jaeger, E, Jones, M, Ludascher, B and Mock, S 2004 “Kepler: an extensible system for design and execution of scientific workflows”. In: Scientific and Statistical Database Management, Proceedings. 16th International Conference on (Apr. 2004) URL:
https://scholar.google.com/scholar?cluster=17284613261601846997 (cit. on p.). - Augustin, S and Müller, C 2013 “Interference effects in Bethe-Heitler pair creation in a bichromatic laser field”. Physical Review A, 88(2): 022109. ISSN: 2469-9934. (cit. on p.). DOI: 10.1103/PhysRevA.88.022109
- Baumer, B, Cetinkaya-Rundel, M, Bray, A, Loi, L and Horton, N J 2014 “R Markdown: Integrating A Reproducible Analysis Tool into Introductory Statistics”. Technological Innovations in Statistics Education, 8. (cit. on p.).
- Beazley, D M “Automated scientific software scripting with SWIG”. In: Future Generation Computer Systems, 19 (Mar. 2003). URL:
https://scholar.google.com/scholar?cluster=14166776132178739884 (cit. on p.). DOI: 10.1016/S0167-739X(02)00171-1 - Beazley, D M 1996 “SWIG: An Easy to Use Tool for Integrating Scripting Languages with C and C++.” In: Tcl/Tk Workshop. URL:
https://scholar.google.com/scholar?cluster=2768773569829356266 (cit. on p.). - Behnel, S, Bradshaw, R, Citro, C, Dalcin, L, Seljebotn, D S and Smith, K “Cython: The Best of Both Worlds”. In: Computing in Science & Engineering, 13(2): 31–39. (Nov. 2011). ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2010.118
- Boettiger, C 2015 “An introduction to Docker for reproducible research”. In: ACM SIGOPS Operating Systems Review, 49(1): 71–79. ISSN: 0163-5980.(cit. on p.). DOI: 10.1145/2723872.2723882
- Cingolani, P, Sladek, R and Blanchette, M 2015 “BigDataScript: a scripting language for data pipelines”. In: Bioinformatics, 31(1): 10–16. ISSN: 1367-4803. (cit. on p.). DOI: 10.1093/bioinformatics/btu595
- Coelho, L P 2013 “Mahotas: Open source software for scriptable computer vision”. In: Journal of Open Research Software 1(1): e3. ISSN: 2049-9647. (cit. on p.) DOI: 10.5334/jors.ac
- Coelho, L P, Kangas, J D, Naik, A W, Osuna-Highley, E, Glory-Afshar, E, Fuhrman, M, Simha, R, Berget, P B, Jarvik, J W and Murphy, R F 2013
“Determining the subcellular location of new proteins from microscope images using local features.” In: Bioinformatics (Oxford, England), 29(18): 2343–9. ISSN: 1367-4803. (cit. on p.). DOI: 10.1093/bioinformatics/btt392 - Coelho, L P, Pato, C, Friães, A, Neumann, A, von Köckritz-Blickwede, M, Ramirez, M and Carriço, J A 2015
“Automatic determination of NET (neutrophil extracellular traps) coverage in fluorescent microscopy images.” In: Bioinformatics (Oxford, England), 31(14): 2364–70. ISSN: 1367-4803. (cit. on p.). DOI: 10.1093/bioinformatics/btv156 - Coelho, L P, Peng, T and Murphy, R F “Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing”. In: Bioinformatics, 26(12): i7–i12. (Oct. 2010). ISSN: 1367-4803. (cit. on p.). DOI: 10.1093/bioinformatics/btq220
- Dask Development Team 2016 Dask: Library for dynamic task scheduling. URL:
http://dask.pydata.org (cit. on p.). - Davison, A “Automated Capture of Experiment Context for Easier Reproducibility in Computational Research”. In: Computing in Science & Engineering 14(4): 48–56. (Dec. 2012). ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2012.41
- Dean, J and Ghemawat, S “MapReduce: simplified data processing on large clusters”. In: Commun. ACM, 51(1): 107—113. (Aug. 2008). ISSN: 0001-0782. (cit. on p.). DOI: 10.1145/1327452.1327492
- Delescluse, M, Franconville, R, Joucla, S, Lieury, T and Pouzat, C “Making neurophysiological data analysis reproducible: Why and how?” In: Journal of Physiology-Paris, (Nov. 2011). ISSN: 0928-4257. URL:
http://www.sciencedirect.com/science/article/pii/S0928425711000374 (cit. on p.) - Devresse, A, Delalondre, F and Schürmann, F 2015 “Nix Based Fully Automated Workflows and Ecosystem to Guarantee Scientific Result Reproducibility Across Software Environments and Systems”. In: Proceedings of the 3rd International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering, 25–31. SE-HPCCSE ′15. Austin, Texas:
ACM , ISBN: 978-1-4503-4012-0. (cit. on p.) DOI: 10.1145/2830168.2830172 - Donoho, D L, Maleki, A, Rahman, I Ur, Shahram, M and Stodden, V “Reproducible Research in Computational Harmonic Analysis”. In: Computing in Science & Engineering, 11(1): 8–18. (Sept. 2009). ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2009.15
- Dudley, J T and Butte, A J “Reproducible in silico research in the era of cloud computing”. In: Nature biotechnology, 28. (Oct. 2010). URL:
https://scholar.google.com/scholar?cluster=14329535853377349322 (cit. on p.). DOI: 10.1038/nbt1110-1181 - Feulner, G 2016 Reproducibility: Principles, Problems, Practices, and Prospects: Principles, Problems, Practices, and Prospects, 269–285. (cit. on p.). DOI: 10.1002/9781118865064.ch12
- Fomel, S 2015 “Reproducible Research as a Community Effort: Lessons from the Madagascar Project”. In: Computing in Science & Engineering, 17(1): 20–26. ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2014.94
- Fomel, S and Hennenfent, G “Reproducible Computational Experiments using Scons”. (July 2007). (cit. on p.). DOI: 10.1109/ICASSP.2007.367305
- Goble, C 2014 “Better Software, Better Research”. In: IEEE Internet Computing, 18(5): 4–8. ISSN: 1089-7801. (cit. on p.). DOI: 10.1109/MIC.2014.88
- Goecks, J, Nekrutenko, A, Taylor, J and The Galaxy Team “Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences”. In: Genome Biology, 11(8): 1–13. (Oct. 2010). ISSN: 1474-760X. (cit. on p.). DOI: 10.1186/gb-2010-11-8-r86
- Goodstadt, L “Ruffus: A Lightweight Python Library for Computational Pipelines”. In: Bioinformatics (Oct. 2010). URL:
http://bioinformatics.oxfordjournals.org/content/early/2010/09/16/bioinformatics.btq524.abstract (cit. p.). - Guo, P J and Engler, D 2010 “Towards Practical Incremental Recomputation for Scientists: An Implementation for the Python Language”. In: Proceedings of the 2nd Conference on Theory and Practice of Provenance, 6–6. TAPP’10. San Jose, California:
USENIX Association . URL:http://dl.acm.org/citation.cfm?id=1855795.1855801 (cit. on p.). - Guo, P J and Engler, D Using automatic persistent memoization to facilitate data analysis scripting 287—297. Nov. 2011. (cit. on p.). DOI: 10.1145/2001420.2001455
- Hannay, J E, MacLeod, C, Singer, J, Langtangen, H P, Pfahl, D and Wilson, G “How do scientists develop and use scientific software?” (Sept. 2009), 1–8. (cit. on p.). DOI: 10.1109/SECSE.2009.5069155
- Haralick, R M, Shanmugam, K and Dinstein, I 1973 “Textural Features for Image Classification.” In: IEEE Transactions on Systems, Man, and Cybernetics, 3(6): 610–621. ISSN: 0018-9472. (cit. on p.). DOI: 10.1109/TSMC.1973.4309314
- Hensman, J, Matthews, A, Filippone, M and Ghahramani, Z 2015 “MCMC for Variationally Sparse Gaussian Processes”. In: (cit. on p.).
- Hull, D, Wolstencroft, K, Stevens, R, Goble, C, Pocock, M R, Li, P and Oinn, T “Taverna: a tool for building and running workflows of services”. In: Nucleic Acids Research, 34(suppl2): W729–W732. (June 2006). ISSN: 0305-1048. (cit. on p.). DOI: 10.1093/nar/gkl320
- Ilyas, A 2014 “MicroFilters: Harnessing twitter for disaster management”. 417–424. (cit. on p.). DOI: 10.1109/GHTC.2014.6970316
- Kluyver, T, Ragan-Kelley, B, Pérez, F, Granger, B E, Bussonnier, M, Frederic, J, Kelley, K, Hamrick, J B, Grout, J, Corlay, S, Ivanov, P, Avila, D, Abdalla, S, Willing, C, et al. 2016 “Jupyter Notebooks – a publishing format for reproducible computational workflows”. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, 20th International Conference on Electronic Publishing, 87–90. Göttingen, Germany,
June 7–9 , (cit. on p.). DOI: 10.3233/978-1-61499-649-1-87 - Köster, J and Rahmann, S
“Snakemake–a scalable bioinformatics workflow engine.” In: Bioinformatics (Oxford, England), 28(19): 2520–2. (Dec. 2012). URL:http://www.ncbi.nlm.nih.gov/pubmed/22908215 (cit. on p.). - Leipzig, J 2016 “A review of bioinformatic pipeline frameworks”. In: Briefings in Bioinformatics, bbw020. ISSN: 1467-5463. (cit. on p.). DOI: 10.1093/bib/bbw020
- Leisch, F Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis, 575–580. Feb. 2002. (cit. on p.). DOI: 10.1007/978-3-642-57489-4_89
- da Veiga Leprevost, F, Grüning, B A, Aflitos, S A, Röst, H L, Uszkoreit, J, Barsnes, H, Vaudel, M, Moreno, P, Gatto, L, Weber, J, Bai, M, Jimenez, R C, Sachsenberg, T, Pfeuffer, J, Alvarez, R V, Griss, J, Nesvizhskii, A I and Perez-Riverol, Y “BioContainers: An open-source and community-driven framework for software standardization”. In: Bioinformatics, 33(16): btx192, ISSN: 1460-2059. (cit. on p.). DOI: 10.1093/bioinformatics/btx192
- LeVeque, R J, Mitchell, I M and Stodden, V “Reproducible research for scientific computing: Tools and strategies for changing the culture”. In: Computing in Science & Engineering, 14(4): 13–17. (Dec. 2012). ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2012.38
- Ludäscher, B, Altintas, I, Berkley, C, Higgins, D, Jaeger, E, Jones, M, Lee, E A, Tao, T and Zhao, Y “Scientific workflow management and the Kepler system”. In: Concurrency and Computation: Practice and Experience, 18(10): 1039–1065. (June 2006). ISSN: 1532-0634. (cit. on p.). DOI: 10.1002/cpe.994
- Markowetz, F 2015 “Five selfish reasons to work reproducibly”. In: Genome Biology, 16(1): 274. ISSN: 1465-6906. (cit. on p.). DOI: 10.1186/s13059-015-0850-7
- Marwick, B 2016 “Computational Reproducibility in Archaeological Research: Basic Principles and a Case Study of Their Implementation”. In: Journal of Archaeological Method and Theory, 1–27. ISSN: 1072-5369. (cit. on p.). DOI: 10.1007/s10816-015-9272-9
- Mishima, H, Sasaki, K, Tanaka, M, Tatebe, O and Yoshiura, K-I “Agile parallel bioinformatics workflow management using Pwrake”. In: BMC Research Notes, 4(1): 331. (Nov. 2011). ISSN: 1756-0500. URL:
https://www.biomedcentral.com/1756-0500/4/331 (cit. on p.). - Moreno, A and Balch, T 2016 “Improving financial computation speed with full and subproblem memorization”. In: Concurrency and Computation: Practice and Experience, 28(3): 905–915. ISSN: 1532-0634. (cit. on p.). DOI: 10.1002/cpe.3693
- Napolitano, F, Mariani-Costantini, R and Tagliaferri, R 2013 “Bioinformatic pipelines in Python with Leaf”. In: BMC Bioinformatics, 14(1): 1–14. ISSN: 1471-2105. (cit. on p.). DOI: 10.1186/1471-2105-14-201
- Nordlie, E, Gewaltig, M-O and Plesser, H E “Towards Reproducible Descriptions of Neuronal Network Models”. In: PLoS Comput Biol, 5(8): e1000456. (Sept. 2009). (cit. on p.). DOI: 10.1371/journal.pcbi.1000456
- Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer, P, Weiss, R, Dubourg, V, Vanderplas, J, Passos, A, Cournapeau, D, Brucher, M, Perrot, M and Duchesnay, E “Scikit-learn: Machine Learning in Python”. (Dec. 2012) (cit. on p.).
- Peng, R D and Eckel, S P “Distributed Reproducible Research Using Cached Computations”. In: Computing in Science & Engineering, 11(1): 28–34. (Sept. 2009). ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2009.6
- Perez, F and Granger, B E “IPython: A System for Interactive Scientific Computing”. In: Computing in Science & Engineering, 9(3): 21—29. (July 2007). ISSN: 1521-9615. URL:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4160251 (cit. on p.). - Prabhu, P, Zhang, Y, Ghosh, S, August, D I, Huang, J, Beard, S, Kim, H, Oh, T, Jablin, T B, Johnson, N P, Zoufaly, M, Raman, A, Liu, F and Walker, D A survey of the practice of computational science. 19. Nov. 2011. (cit. on p.). DOI: 10.1145/2063348.2063374
- Rampin, R, Chirigati, F, Shasha, D, Freire, J and Steeves, V “ReproZip: The Reproducibility Packer”. In: The Journal of Open Source Software, 1(8): (Dec. 2016). (cit. on p.). DOI: 10.21105/joss.00107
- Sadedin, S P, Pope, B and Oshlack, A “Bpipe: a tool for running and managing bioinformatics pipelines”. In: Bioinformatics, 28(11): 1525–1526. (Dec. 2012). ISSN: 1367-4803. (cit. on p.). DOI: 10.1093/bioinformatics/bts167
- Saul, A D, Hensman, J, Vehtari, A and Lawrence, N D 2016 “Chained Gaussian Processes”. In: BMC Bioinformatics, 14(1): 1431–1440. ISSN: 1471-2105. (cit. on p.). DOI: 10.1186/1471-2105-14-252
- Schwab, M, Karrenbach, M and Claerbout, J 2000 “Making scientific computations reproducible”. In: Computing in Science & Engineering, 2(6): 61–67. ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/5992.881708
- Severin, J, Beal, K, Vilella, A, Fitzgerald, S, Schuster, M, Gordon, L, Ureta-Vidal, A, Flicek, P and Herrero, J “eHive: An Artificial Intelligence workflow system for genomic analysis”. In: BMC Bioinformatics, 11(1): 240. ISSN: 1471-2105. (cit. on p.). URL:
http://www.biomedcentral.com/1471-2105/11/240 (Oct. 2010). - Sorge, A pyfssa 0.7.6. Dec. 2015. (cit. on p.). DOI: 10.5281/zenodo.35293
- Spjuth, O, Bongcam-Rudloff, E, Hernández, G C, Forer, L, Giovacchini, M, Guimera, R V, Kallio, A, Korpelainen, E, Kańduła, M M, Krachunov, M, Kreil, D P, Kulev, O, Łabaj, P P, Lampa, S, Pireddu, L, Schönherr, S, Siretskiy, A and Vassilev, D 2015 “Experiences with workflows for automating data-intensive bioinformatics”. In: Biology Direct, 10(1). ISSN: 1745-6150. (cit. on p.). DOI: 10.1186/s13062-015-0071-8
- Sunagawa, S, et al. 2015 “Structure and function of the global ocean microbiome”. In: Science, 348(6237): 1261359. ISSN: 0036-8075. (cit. on p.). DOI: 10.1126/science.1261359
- Taylor, I J, Deelman, E, Gannon, D B and Shields, M 2014 “Workflows for e-Science: scientific workflows for grids”. URL:
https://scholar.google.com/scholar?cluster=704055550438545383 (cit. on p.). - Vandewalle, P, Kovacevic, J and Vetterli, M “Reproducible research in signal processing”. In: Signal Processing Magazine, IEEE, 26(3): 37–47. (Sept. 2009), ISSN: 1053-5888. (cit. on p.). DOI: 10.1109/MSP.2009.932122
- Vasilescu, B, Yu, Y, Wang, H, Devanbu, P and Filkov, V 2015 Quality and productivity outcomes relating to continuous integration in GitHub, 805–816. (cit. on p.). DOI: 10.1145/2786805.2786850
- Vuollekoski, H, Vogt, M, Sinclair, V A, Duplissy, J, Järvinen, H, Kyrö, E-M, Makkonen, R, Petäjä, T, Prisle, N L, Räisänen, P, Sipilä, M, Ylhäisi, J and Kulmala, M 2015 “Estimates of global dew collection potential on artificial surfaces”. In: Hydrology and Earth System Sciences, 19(1): 601–613. ISSN: 1027-5606. (cit. on p.). DOI: 10.5194/hess-19-601-2015
- Van Der Walt, S, Colbert, S C and Varoquaux, G “The NumPy array: a structure for efficient numerical computation”. In: Computing in Science & Engineering 13(2): 22–30. (Nov. 2011). ISSN: 1521-9615. (cit. on p.). DOI: 10.1109/MCSE.2011.37
- Wilson, G, Aruliah, D A, Brown, C T, Hong, N P C, Davis, M, Guy, R T, Haddock, S H D, Huff, K D, Mitchell, I M, Plumbley, M D, Waugh, B, White, E P and Wilson, P 2014 “Best Practices for Scientific Computing” In: PLoS Biology, 12(1): e1001745. ISSN: 1544-9173. (cit. on p.). DOI: 10.1371/journal.pbio.1001745
- Xie, Y 2015 “Dynamic Documents with R and knitr”. 29 (2015). URL:
https://scholar.google.com/scholar?cluster=1723118227528908006 (cit. on p.). - Zaharia, M, Chowdhury, M, Franklin, M J, Shenker, S and Stoica, I “Spark: cluster computing with working sets.” In: HotCloud, 10 (Oct. 2010).
https://scholar.google.com/scholar?cluster=14934743972440878947 (cit. on p.).
