References
- 1Almufareh, M. F., Tehsin, S., Humayun, M., & Kausar, S. (2023). Intellectual disability and technology: An artificial intelligence perspective and framework. Journal of Disability Research, 2(4). DOI: 10.57197/jdr-2023-0055
- 2Anahita, M. B. (2015). Word Alignment for Statistical Machine Translation Using Hidden Markov Models. [Report, Simon Fraser University].
- 3Anuraj, B., & Goutam, M. (2024).
A case study on tools and techniques of machine translation of Indian low resource languages . In P. Pakray, P. Dadure & S. Bandyopadhyay (Eds.), Empowering low-resource languages with NLP solutions (pp. 51–85). IGI Global. DOI: 10.4018/979-8-3693-0728-1.ch004 - 4Bakarola, V., & Nasriwala, J. (2021). Attention-based neural machine translation approach for low-resourced Indic languages—A case of Sanskrit to Hindi translation. Smart Systems: Innovations in Computing, 565–572. DOI: 10.1007/978-981-16-2877-1_52
- 5Essel, H. B., Vlachopoulos, D., Essuman, A. B., & Amankwa, J. O. (2024). ChatGPT effects on cognitive skills of undergraduate students: Receiving instant responses from AI-based conversational large language models (LLMs). Computers and Education: Artificial Intelligence, 6, 100198. DOI: 10.1016/j.caeai.2023.100198
- 6Kuang, H., Chen, H., Ma, X., & Liu, X. (2022). A keyword detection and context filtering method for document level relation extraction. Applied Sciences, 12(3), 1599. DOI: 10.3390/app12031599
- 7Kumar, R., & Sahula, V. (2022). Word translation using cross-lingual word embedding: Case of Sanskrit to Hindi translation. In 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). DOI: 10.1109/aisp53593.2022.9760564
- 8Lau, Y. L., Yong, Z. X., Chia, C. E., Yong, Z. H., Abu Bakar, A. L., Ku, C. J., Nasir, E., & Arumugam, B. (2024). Comparing translation accuracy in Belt and Road Malaysia children’s literature: Malay and Chinese native speakers vs ChatGPT. Forum for Linguistic Studies, 6(1), 2069. Retrieved from
https://ojs.acad-pub.com/index.php/FLS/article/view/v6i1.2069 . DOI: 10.59400/fls.v6i1.2069 - 9Lau, Y. L. (2024a). Poem human and AI translator [Data set]. Mendeley Data. DOI: 10.17632/vc5wc8rymx.1
- 10Lau, Y. L. (2024b). Rubric and template [Data set]. Mendeley Data. DOI: 10.17632/s6bx8wyvwg.1
- 11Li, X. (2024). Comparison of translation quality between large language models and neural machine translation systems: A case study of Chinese-English language pair. International Journal of Education and Humanities, 4(2), 121–128. DOI: 10.58557/(ijeh).v4i2.213
- 12Lin, F., & Mitamura, T. (2004). Keyword translation from English to Chinese for multilingual QA. Machine Translation: From Real Users to Research, 164–176. DOI: 10.1007/978-3-540-30194-3_19
- 13Lin, Y. (2023). The relationship between machine translation and human translation in the era of artificial intelligence machine translation. Applied and Computational Engineering, 5(1), 133–138. DOI: 10.54254/2755-2721/5/20230547
- 14Liu, Y., & Liang, J. (2024). Multidimensional comparison of Chinese-English interpreting outputs from human and machine: Implications for interpreting education in the machine-translation age. Linguistics and Education, 80, 101273. DOI: 10.1016/j.linged.2024.101273
- 15Kelebercová, L., & Forgac, F. (2022). Keyword extraction for automatic evaluation of machine translation.
- 16McKellar, C. A., & Puttkammer, M. J. (2020). Dataset for comparable evaluation of machine translation between 11 South African languages. Data in Brief, 29, 105146. DOI: 10.1016/j.dib.2020.105146
- 17Mohammed Moneus, A., & Sahari, Y. (2023). Artificial intelligence and human translation: A contrastive study based on legal texts. DOI: 10.2139/ssrn.4441379
- 18Sun, W. (2021). Integration of machine translation and manual translation in translation practice based on artificial intelligence and big data technology. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (pp. 1895–1897). DOI: 10.1145/3495018.3495510
- 19Sundberg, L., & Holmström, J. (2024). Innovating by prompting: How to facilitate innovation in the age of generative AI. Business Horizons. DOI: 10.1016/j.bushor.2024.04.014
- 20Nekoto, W., Marivate, V., Matsila, T., Fasubaa, T., Kolawole, T., Fagbohungbe, T., Akinola, S. O., Muhammad, S. H., Kabongo, S., Osei, S., Freshia, S., Niyongabo, R. A., Macharm, R., Ogayo, P., Ahia, O., Meressa, M., Adeyemi, M., Mokgesi-Selinga, M., Okegbemi, L., … Martinus, L. J. (2020). Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages. Findings of the Association for Computational Linguistics: EMNLP, 2144–2160. DOI: 10.18653/v1/2020.findings-emnlp.195
- 21Wong, B., & Kit, C. (2009). ATEC: Automatic evaluation of machine translation via word choice and word order. Machine Translation, 23(2–3), 141–155. DOI: 10.1007/s10590-009-9061-x
- 22Yu, Y. X. (2024). Application of translation technology based on AI in translation teaching. Systems and Soft Computing, 6, 200072. DOI: 10.1016/j.sasc.2024.200072
- 23Zhili, W., & Qian, Z. (2024). A deep learning-based method for determining semantic similarity of English translation keywords. International Journal of Advanced Computer Science and Applications, 15(5). DOI: 10.14569/ijacsa.2024.0150531
