References
- 1Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior research methods, 39(3), 445–459. DOI: 10.3758/BF03193014
- 2Barbosa, J., Stein, H., Martinez, R., Galan, A., Adam, K., Li, S., Valls-Solé, J., Constantinidis, C., & Compte, A. (in press). Nature Neuroscience.
- 3Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1(3), 385–402. DOI: 10.1214/06-BA115
- 4Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. DOI: 10.1163/156856897X00357
- 5Christophel, T. B., Iamshchinina, P., Yan, C., Allefeld, C., & Haynes, J. D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21(4), 494–496. DOI: 10.1038/s41593-018-0094-4
- 6Gosseries, O., Yu, Q., LaRocque, J. J., Starrett, M. J., Rose, N. S., Cowan, N., & Postle, B. R. (2018). Parietal-occipital interactions underlying control-and representation-related processes in working memory for nonspatial visual features. Journal of Neuroscience, 38(18), 4357–4366. DOI: 10.1523/JNEUROSCI.2747-17.2018
- 7Jeffreys, H. (1935, April). Some tests of significance, treated by the theory of probability. In Mathematical Proceedings of the Cambridge Philosophical Society, 31(2), 203–222).
Cambridge University Press . DOI: 10.1017/S030500410001330X - 8Jeffreys, H. (1961).
Theory of Probability , 3rd Edn Oxford: Oxford University Press. - 9Jerde, T. A., Merriam, E. P., Riggall, A. C., Hedges, J. H., & Curtis, C. E. (2012). Prioritized maps of space in human frontoparietal cortex. Journal of Neuroscience, 32(48), 17382–17390. DOI: 10.1523/JNEUROSCI.3810-12.2012
- 10Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. DOI: 10.1080/01621459.1995.10476572
- 11Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3?.
- 12LaRocque, J. J., Eichenbaum, A. S., Starrett, M. J., Rose, N. S., Emrich, S. M., & Postle, B. R. (2015). The short-and long-term fates of memory items retained outside the focus of attention. Memory & Cognition, 43(3), 453–468. DOI: 10.3758/s13421-014-0486-y
- 13LaRocque, J. J., Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2013). Decoding attended information in short-term memory: an EEG study. Journal of Cognitive Neuroscience, 25(1), 127–142. DOI: 10.1162/jocn_a_00305
- 14LaRocque, J. J., Riggall, A. C., Emrich, S. M., & Postle, B. R. (2017). Within-category decoding of information in different attentional states in short-term memory. Cerebral Cortex, 27(10), 4881–4890. DOI: 10.1093/cercor/bhw283
- 15Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 61–79. DOI: 10.1162/jocn_a_00140
- 16Lewis-Peacock, J. A., Kessler, Y., & Oberauer, K. (2018). The removal of information from working memory. Annals of the New York Academy of Sciences, 1424(1), 33–44. DOI: 10.1111/nyas.13714
- 17Masse, N. Y., Yang, G. R., Song, H. F., Wang, X. J., & Freedman, D. J. (2019). Circuit mechanisms for the maintenance and manipulation of information in working memory. Nature Neuroscience, 22, 1159–1167. DOI: 10.1038/s41593-019-0414-3
- 18Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449–461. DOI: 10.1016/j.tics.2017.03.010
- 19Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442. DOI: 10.1163/156856897X00366
- 20Postle, B. R., & Oberauer, K. (in press).
Working Memory . To appear In: M. J. Kahana & A. D. Wagner (Eds.), The Oxford Handbook of Human Memory. Oxford, UK: Oxford University Press. - 21Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience, 22(8), 1336–1344. DOI: 10.1038/s41593-019-0428-x
- 22Rose, N. S., LaRocque, J. J., Riggall, A. C., Gosseries, O., Starrett, M. J., Meyering, E. E., & Postle, B. R. (2016). Reactivation of latent working memories with transcranial magnetic stimulation. Science, 354(6316), 1136–1139. DOI: 10.1126/science.aah7011
- 23Rose, N. S., Olsen, R. K., Craik, F. I., & Rosenbaum, R. S. (2012). Working memory and amnesia: the role of stimulus novelty. Neuropsychologia, 50(1), 11–18. DOI: 10.1016/j.neuropsychologia.2011.10.016
- 24Team, J. A. S. P. (2016). Jasp. Version 0.8. 0.0. software.
- 25van Loon, A. M., Olmos-Solis, K., Fahrenfort, J. J., & Olivers, C. N. (2018). Current and future goals are represented in opposite patterns in object-selective cortex. ELife, 7,
e38677 . DOI: 10.7554/eLife.38677 - 26Wagenmakers, E. J., Verhagen, J., Ly, A., Matzke, D., Steingroever, H., Rouder, J. N., & Morey, R. D. (2017). The need for Bayesian hypothesis testing in psychological science. Psychological science under scrutiny: Recent challenges and proposed solutions, 123–138. DOI: 10.1002/9781119095910.ch8
- 27Wan, Q., Cai, Y., Samaha, J., & Postle, B. R. (in-principle accepted preregistered report).
Tracking stimulus representation across a 2-back visual working memory task . Royal Society Open Science. - 28Yu, Q., & Postle, B. R. (2018). Different states of priority recruit different neural codes in visual working memory. bioRxiv,
334920 . DOI: 10.1101/334920
