Have a personal or library account? Click to login
Decision Making and Oddball Effects on Pupil Size: Evidence for a Sequential Process Cover

Decision Making and Oddball Effects on Pupil Size: Evidence for a Sequential Process

Open Access
|Mar 2020

References

  1. 1Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450. DOI: 10.1146/annurev.neuro.28.061604.135709
  2. 2Beatty, J., & Wagoner, B. L. (1978). Pupillometric signs of brain activation vary with level of cognitive processing. Science, 199(4334), 12161218. DOI: 10.1126/science.628837
  3. 3Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289300. DOI: 10.1111/j.2517-6161.1995.tb02031.x
  4. 4Bruin, K., & Wijers, A. (2002). Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clinical Neurophysiology, 113(7), 11721182. DOI: 10.1016/S1388-2457(02)00141-4
  5. 5Cavanagh, J. F., Wiecki, T. V., Kochar, A., & Frank, M. J. (2014). Eye tracking and pupillometry are indicators of dissociable latent decision processes. Journal of Experimental Psychology: General, 143(4), 1476. DOI: 10.1037/a0035813
  6. 6Deco, G., Pérez-Sanagustín, M., De Lafuente, V., & Romo, R. (2007). Perceptual detection as a dynamical bistability phenomenon: a neurocomputational correlate of sensation. Proceedings of the National Academy of Sciences, 104(50), 2007320077. DOI: 10.1073/pnas.0709794104
  7. 7De Gee, J. W., Colizoli, O., Kloosterman, N. A., Knapen, T., Nieuwenhuis, S., & Donner, T. H. (2017). Dynamic modulation of decision biases by brainstem arousal systems. Elife, 6, 136. DOI: 10.7554/eLife.23232
  8. 8De Gee, J. W., Knapen, T., & Donner, T. H. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proceedings of the National Academy of Sciences of the United States of America, 111(5), E618E625. DOI: 10.1073/pnas.1317557111
  9. 9Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14(5), 456467. DOI: 10.1111/j.1469-8986.1977.tb01312.x
  10. 10Ehlers, J., Strauch, C., Georgi, J., & Huckauf, A. (2016). Pupil size changes as an active information channel for biofeedback applications. Applied Psychophysiology and Biofeedback, 41(3), 331339. DOI: 10.1007/s10484-016-9335-z
  11. 11Einhäuser, W. (2017). The pupil as marker of cognitive processes. In Computational and cognitive neuroscience of vision (pp. 141169). Springer. DOI: 10.1007/978-981-10-0213-7_7
  12. 12Einhäuser, W., Koch, C., & Carter, O. L. (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 4, 19. DOI: 10.3389/fnhum.2010.00018
  13. 13Georgi, J., Kowalski, D., Ehlers, J., & Huckauf, A. (2014). Real-time feedback towards voluntary pupil control in human-computer interaction: Enabling continuous pupillary feedback. In International workshop on icts for improving patients rehabilitation research techniques (pp. 104114). DOI: 10.1007/978-3-662-48645-0_10
  14. 14Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252269. DOI: 10.3758/CABN.10.2.252
  15. 15Gordon, I. (1967). Stimulus probability and simple reaction time. Nature, 215(5103), 895. DOI: 10.1038/215895a0
  16. 16Greiter, L., Strauch, C., & Huckauf, A. (2018). Pupil responses signal less inhibition for own relative to other names. In Proceedings of the 2018 acm symposium on eye tracking research & applications (p. 59). DOI: 10.1038/s41598-018-31551-x
  17. 17Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 11901192. DOI: 10.1126/science.143.3611.1190
  18. 18Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849878. DOI: 10.1017/S0140525X01000103
  19. 19JASP-Team, et al. (2018). Jasp (version 0.8. 6)[computer software].
  20. 20Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221234. DOI: 10.1016/j.neuron.2015.11.028
  21. 21Kiefer, M., Marzinzik, F., Weisbrod, M., Scherg, M., & Spitzer, M. (1998). The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport, 9(4), 765770. DOI: 10.1097/00001756-199803090-00037
  22. 22Klingner, J. (2010). Fixation-aligned pupillary response averaging. In Proceedings of the 2010 symposium on eye-tracking research & applications (pp. 275282). DOI: 10.1145/1743666.1743732
  23. 23Kuchinke, L., , M. L.-H., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65(2), 132140. DOI: 10.1016/j.ijpsycho.2007.04.004
  24. 24Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1). DOI: 10.5334/joc.18
  25. 25Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with bold activity in human locus coeruleus. Human Brain Mapping, 35(8), 41404154. DOI: 10.1002/hbm.22466
  26. 26Murphy, P. R., Vandekerckhove, J., & Nieuwenhuis, S. (2014). Pupil-linked arousal determines variability in perceptual decision making. PLoS Computational Biology, 10(9), e1003854. DOI: 10.1371/journal.pcbi.1003854
  27. 27Naber, M., Stoll, J., Einhäuser, W., & Carter, O. (2013). How to become a mentalist: reading decisions from a competitor’s pupil can be achieved without training but requires instruction. Plos one, 8(8), e73302. DOI: 10.1371/journal.pone.0073302
  28. 28Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the p3, and the locus coeruleus–norepinephrine system. Psychological Bulletin, 131(4), 510. DOI: 10.1037/0033-2909.131.4.510
  29. 29Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the p3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162175. DOI: 10.1111/j.1469-8986.2010.01057.x
  30. 30Preuschoff, K., ’t Hart, B. M., & Einhäuser, W. (2011). Pupil dilation signals surprise: Evidence for noradrenaline’s role in decision making. Frontiers in Neuroscience, 5, 112. DOI: 10.3389/fnins.2011.00115
  31. 31Qiyuan, J., Richer, F., Wagoner, B. L., & Beatty, J. (1985). The pupil and stimulus probability. Psychophysiology, 22(5), 530534. DOI: 10.1111/j.1469-8986.1985.tb01645.x
  32. 32Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological bulletin, 114(3), 510532. DOI: 10.1037/0033-2909.114.3.510
  33. 33Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260281. DOI: 10.1016/j.tics.2016.01.007
  34. 34R-Core-Team, et al. (2013). R: A language and environment for statistical computing.
  35. 35Richer, F., & Beatty, J. (1985). Pupillary dilations in movement preparation and execution. Psychophysiology, 22(2), 204207. DOI: 10.1111/j.1469-8986.1985.tb01587.x
  36. 36Satterthwaite, T. D., Green, L., Myerson, J., Parker, J., Ramaratnam, M., & Buckner, R. L. (2007). Dissociable but inter-related systems of cognitive control and reward during decision making: evidence from pupillometry and event-related fmri. Neuroimage, 37(3), 10171031. DOI: 10.1016/j.neuroimage.2007.04.066
  37. 37Schneider, M., Leuchs, L., Czisch, M., Sämann, P. G., & Spoormaker, V. I. (2018). Disentangling reward anticipation with simultaneous pupillometry/fmri. NeuroImage, 178, 1122. DOI: 10.1016/j.neuroimage.2018.04.078
  38. 38Simpson, H. (1969). Effects of a task-relevant response on pupil size. Psychophysiology, 6(2), 115121. DOI: 10.1111/j.1469-8986.1969.tb02890.x
  39. 39Simpson, H., & Hale, S. M. (1969). Pupillary changes during a decision-making task. Perceptual and Motor Skills, 29(2), 495498. DOI: 10.2466/pms.1969.29.2.495
  40. 40Strauch, C., Ehlers, J., & Huckauf, A. (2017). Pupil-assisted target selection (pats). In Ifip conference on human-computer interaction (pp. 297312). DOI: 10.1007/978-3-319-67687-6_20
  41. 41Strauch, C., Greiter, L., & Huckauf, A. (2018). Pupil dilation but not microsaccade rate robustly reveals decision formation. Scientific Reports, 8(1), 13165. DOI: 10.1038/s41598-018-31551-x
  42. 42van Olst, E., Heemstra, M., & Ten Kortenaar, T. (1979). Stimulus significance and the orienting reaction. In H. Kimmel, E. Van Olst & J. Orlebeke (Eds.), The orienting reflex in humans (pp. 521547). New York, NY: Lawrence Erlbaum Associates.
  43. 43Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience, 35(20), 78667877. DOI: 10.3389/fnbeh.2015.00310
  44. 44Verleger, R., Cäsar, S., Stephanie, B., & Smigasiewicz, K. (2017). On why targets evoke p3 components in prediction tasks: Drawing an analogy between prediction and matching tasks. Frontiers in Human Neuroscience, 11, 497. DOI: 10.3389/fnhum.2017.00497
  45. 45Verleger, R., Grauhan, N., & Śmigasiewicz, K. (2016). Go and no-go p3 with rare and frequent stimuli in oddball tasks: A study comparing key-pressing with counting. International Journal of Psychophysiology, 110, 128136. DOI: 10.1016/j.ijpsycho.2016.11.009
  46. 46Verleger, R., Keppeler, M., Sassenhagen, J., & Śmigasiewicz, K. (2018). The oddball effect on p3 disappears when feature relevance or feature-response mappings are unknown. Experimental Brain Research, 236(10), 27812796. DOI: 10.1007/s00221-018-5334-z
  47. 47Verleger, R., & Śmigasiewicz, K. (2016). Do rare stimuli evoke large p3s by being unexpected? a comparison of oddball effects between standard-oddball and prediction-oddball tasks. Advances in Cognitive Psychology, 12(2), 88. DOI: 10.5709/acp-0189-9
  48. 48Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Research, 50(14), 13041311. DOI: 10.1016/j.visres.2009.11.002
  49. 49Zekveld, A. A., Koelewijn, T., & Kramer, S. E. (2018). The pupil dilation response to auditory stimuli: Current state of knowledge. Trends in hearing, 22, 125. DOI: 10.1177/2331216518777174
DOI: https://doi.org/10.5334/joc.96 | Journal eISSN: 2514-4820
Language: English
Submitted on: Sep 10, 2019
Accepted on: Mar 2, 2020
Published on: Mar 27, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Christoph Strauch, Ina Koniakowsky, Anke Huckauf, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.