References
- 1Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. DOI: 10.1146/annurev.neuro.28.061604.135709
- 2Beatty, J., & Wagoner, B. L. (1978). Pupillometric signs of brain activation vary with level of cognitive processing. Science, 199(4334), 1216–1218. DOI: 10.1126/science.628837
- 3Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300. DOI: 10.1111/j.2517-6161.1995.tb02031.x
- 4Bruin, K., & Wijers, A. (2002). Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clinical Neurophysiology, 113(7), 1172–1182. DOI: 10.1016/S1388-2457(02)00141-4
- 5Cavanagh, J. F., Wiecki, T. V., Kochar, A., & Frank, M. J. (2014). Eye tracking and pupillometry are indicators of dissociable latent decision processes. Journal of Experimental Psychology: General, 143(4), 1476. DOI: 10.1037/a0035813
- 6Deco, G., Pérez-Sanagustín, M., De Lafuente, V., & Romo, R. (2007). Perceptual detection as a dynamical bistability phenomenon: a neurocomputational correlate of sensation. Proceedings of the National Academy of Sciences, 104(50), 20073–20077. DOI: 10.1073/pnas.0709794104
- 7De Gee, J. W., Colizoli, O., Kloosterman, N. A., Knapen, T., Nieuwenhuis, S., & Donner, T. H. (2017). Dynamic modulation of decision biases by brainstem arousal systems. Elife, 6, 1–36. DOI: 10.7554/eLife.23232
- 8De Gee, J. W., Knapen, T., & Donner, T. H. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proceedings of the National Academy of Sciences of the United States of America, 111(5), E618–E625. DOI: 10.1073/pnas.1317557111
- 9Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14(5), 456–467. DOI: 10.1111/j.1469-8986.1977.tb01312.x
- 10Ehlers, J., Strauch, C., Georgi, J., & Huckauf, A. (2016). Pupil size changes as an active information channel for biofeedback applications. Applied Psychophysiology and Biofeedback, 41(3), 331–339. DOI: 10.1007/s10484-016-9335-z
- 11Einhäuser, W. (2017).
The pupil as marker of cognitive processes . In Computational and cognitive neuroscience of vision (pp. 141–169). Springer. DOI: 10.1007/978-981-10-0213-7_7 - 12Einhäuser, W., Koch, C., & Carter, O. L. (2010). Pupil dilation betrays the timing of decisions. Frontiers in Human Neuroscience, 4, 1–9. DOI: 10.3389/fnhum.2010.00018
- 13Georgi, J., Kowalski, D., Ehlers, J., & Huckauf, A. (2014). Real-time feedback towards voluntary pupil control in human-computer interaction: Enabling continuous pupillary feedback. In International workshop on icts for improving patients rehabilitation research techniques (pp. 104–114). DOI: 10.1007/978-3-662-48645-0_10
- 14Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252–269. DOI: 10.3758/CABN.10.2.252
- 15Gordon, I. (1967). Stimulus probability and simple reaction time. Nature, 215(5103), 895. DOI: 10.1038/215895a0
- 16Greiter, L., Strauch, C., & Huckauf, A. (2018). Pupil responses signal less inhibition for own relative to other names. In Proceedings of the 2018 acm symposium on eye tracking research & applications (p. 59). DOI: 10.1038/s41598-018-31551-x
- 17Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 1190–1192. DOI: 10.1126/science.143.3611.1190
- 18Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878. DOI: 10.1017/S0140525X01000103
- 19JASP-Team, et al. (2018). Jasp (version 0.8. 6)[computer software].
- 20Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234. DOI: 10.1016/j.neuron.2015.11.028
- 21Kiefer, M., Marzinzik, F., Weisbrod, M., Scherg, M., & Spitzer, M. (1998). The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport, 9(4), 765–770. DOI: 10.1097/00001756-199803090-00037
- 22Klingner, J. (2010). Fixation-aligned pupillary response averaging. In Proceedings of the 2010 symposium on eye-tracking research & applications (pp. 275–282). DOI: 10.1145/1743666.1743732
- 23Kuchinke, L., Võ, M. L.-H., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65(2), 132–140. DOI: 10.1016/j.ijpsycho.2007.04.004
- 24Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1). DOI: 10.5334/joc.18
- 25Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with bold activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140–4154. DOI: 10.1002/hbm.22466
- 26Murphy, P. R., Vandekerckhove, J., & Nieuwenhuis, S. (2014). Pupil-linked arousal determines variability in perceptual decision making. PLoS Computational Biology, 10(9),
e1003854 . DOI: 10.1371/journal.pcbi.1003854 - 27Naber, M., Stoll, J., Einhäuser, W., & Carter, O. (2013). How to become a mentalist: reading decisions from a competitor’s pupil can be achieved without training but requires instruction. Plos one, 8(8),
e73302 . DOI: 10.1371/journal.pone.0073302 - 28Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the p3, and the locus coeruleus–norepinephrine system. Psychological Bulletin, 131(4), 510. DOI: 10.1037/0033-2909.131.4.510
- 29Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the p3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162–175. DOI: 10.1111/j.1469-8986.2010.01057.x
- 30Preuschoff, K., ’t Hart, B. M., & Einhäuser, W. (2011). Pupil dilation signals surprise: Evidence for noradrenaline’s role in decision making. Frontiers in Neuroscience, 5, 1–12. DOI: 10.3389/fnins.2011.00115
- 31Qiyuan, J., Richer, F., Wagoner, B. L., & Beatty, J. (1985). The pupil and stimulus probability. Psychophysiology, 22(5), 530–534. DOI: 10.1111/j.1469-8986.1985.tb01645.x
- 32Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological bulletin, 114(3), 510–532. DOI: 10.1037/0033-2909.114.3.510
- 33Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260–281. DOI: 10.1016/j.tics.2016.01.007
- 34R-Core-Team, et al. (2013). R: A language and environment for statistical computing.
- 35Richer, F., & Beatty, J. (1985). Pupillary dilations in movement preparation and execution. Psychophysiology, 22(2), 204–207. DOI: 10.1111/j.1469-8986.1985.tb01587.x
- 36Satterthwaite, T. D., Green, L., Myerson, J., Parker, J., Ramaratnam, M., & Buckner, R. L. (2007). Dissociable but inter-related systems of cognitive control and reward during decision making: evidence from pupillometry and event-related fmri. Neuroimage, 37(3), 1017–1031. DOI: 10.1016/j.neuroimage.2007.04.066
- 37Schneider, M., Leuchs, L., Czisch, M., Sämann, P. G., & Spoormaker, V. I. (2018). Disentangling reward anticipation with simultaneous pupillometry/fmri. NeuroImage, 178, 11–22. DOI: 10.1016/j.neuroimage.2018.04.078
- 38Simpson, H. (1969). Effects of a task-relevant response on pupil size. Psychophysiology, 6(2), 115–121. DOI: 10.1111/j.1469-8986.1969.tb02890.x
- 39Simpson, H., & Hale, S. M. (1969). Pupillary changes during a decision-making task. Perceptual and Motor Skills, 29(2), 495–498. DOI: 10.2466/pms.1969.29.2.495
- 40Strauch, C., Ehlers, J., & Huckauf, A. (2017). Pupil-assisted target selection (pats). In Ifip conference on human-computer interaction (pp. 297–312). DOI: 10.1007/978-3-319-67687-6_20
- 41Strauch, C., Greiter, L., & Huckauf, A. (2018). Pupil dilation but not microsaccade rate robustly reveals decision formation. Scientific Reports, 8(1), 13165. DOI: 10.1038/s41598-018-31551-x
- 42van Olst, E., Heemstra, M., & Ten Kortenaar, T. (1979).
Stimulus significance and the orienting reaction . In H. Kimmel, E. Van Olst & J. Orlebeke (Eds.), The orienting reflex in humans (pp. 521—547). New York, NY: Lawrence Erlbaum Associates. - 43Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience, 35(20), 7866–7877. DOI: 10.3389/fnbeh.2015.00310
- 44Verleger, R., Cäsar, S., Stephanie, B., & Smigasiewicz, K. (2017). On why targets evoke p3 components in prediction tasks: Drawing an analogy between prediction and matching tasks. Frontiers in Human Neuroscience, 11, 497. DOI: 10.3389/fnhum.2017.00497
- 45Verleger, R., Grauhan, N., & Śmigasiewicz, K. (2016). Go and no-go p3 with rare and frequent stimuli in oddball tasks: A study comparing key-pressing with counting. International Journal of Psychophysiology, 110, 128–136. DOI: 10.1016/j.ijpsycho.2016.11.009
- 46Verleger, R., Keppeler, M., Sassenhagen, J., & Śmigasiewicz, K. (2018). The oddball effect on p3 disappears when feature relevance or feature-response mappings are unknown. Experimental Brain Research, 236(10), 2781–2796. DOI: 10.1007/s00221-018-5334-z
- 47Verleger, R., & Śmigasiewicz, K. (2016). Do rare stimuli evoke large p3s by being unexpected? a comparison of oddball effects between standard-oddball and prediction-oddball tasks. Advances in Cognitive Psychology, 12(2), 88. DOI: 10.5709/acp-0189-9
- 48Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Research, 50(14), 1304–1311. DOI: 10.1016/j.visres.2009.11.002
- 49Zekveld, A. A., Koelewijn, T., & Kramer, S. E. (2018). The pupil dilation response to auditory stimuli: Current state of knowledge. Trends in hearing, 22, 1–25. DOI: 10.1177/2331216518777174
