References
- Bae, G. Y., & Luck, S. J. (2018). Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials. Journal of Neuroscience, 38(2), 409–422. DOI: 10.1523/JNEUROSCI.2860-17.2017
- Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J. D. (2017). The Distributed Nature of Working Memory. Trends in Cognitive Sciences, 21(2), 111–124. DOI: 10.1016/j.tics.2016.12.007
- Constantinidis, C., Funahashi, S., Lee, D., Murray, J. D., Qi, X.-L., Wang, M., & Arnsten, A. F. T. (2018). Persistent Spiking Activity Underlies Working Memory. Journal of Neuroscience, 38(32), 7020–7028. DOI: 10.1523/JNEUROSCI.2486-17.2018
- Fougnie, D., & Marois, R. (2006). Distinct Capacity Limits for Attention and Working Memory Evidence From Attentive Tracking and Visual Working Memory Paradigms. Psychological Science, 17(6), 526–534. DOI: 10.1111/j.1467-9280.2006.01739.x
- Harrison, W. J., & Bays, P. M. (2018). Visual working memory is independent of the cortical spacing between memoranda. Journal of Neuroscience, 2645–17. DOI: 10.1523/JNEUROSCI.2645-17.2017
- Jha, A. P., & Kiyonaga, A. (2010). Working-memory-triggered dynamic adjustments in cognitive control. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(4), 1036–1042. DOI: 10.1037/a0019337
- Johnson, M. R., Higgins, J. A., Norman, K. A., Sederberg, P. B., Smith, T. A., & Johnson, M. K. (2013). Foraging for Thought An Inhibition-of-Return-Like Effect Resulting From Directing Attention Within Working Memory. Psychological Science. DOI: 10.1177/0956797612466414
- Kim, S. Y., Kim, M. S., & Chun, M. M. (2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16524. DOI: 10.1073/pnas.0505454102
- Kiyonaga, A., Dowd, E. W., & Egner, T. (2017). Neural Representation of Working Memory Content Is Modulated by Visual Attentional Demand. Journal of Cognitive Neuroscience, 29(12), 2011–2024. DOI: 10.1162/jocn_a_01174
- Kiyonaga, A., & Egner, T. (2014). The Working Memory Stroop Effect When Internal Representations Clash With External Stimuli. Psychological Science, 25(8), 1619–1629. DOI: 10.1177/0956797614536739
- Kiyonaga, A., & Egner, T. (2016). Center-Surround Inhibition in Working Memory. Current Biology, 26(1), 64–68. DOI: 10.1016/j.cub.2015.11.013
- Leavitt, M. L., Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Sustained Activity Encoding Working Memories: Not Fully Distributed. Trends in Neurosciences, 40(6), 328–346. DOI: 10.1016/j.tins.2017.04.004
- Lundqvist, M., Herman, P., & Miller, E. K. (2018). Working Memory: Delay Activity, Yes! Persistent Activity? Maybe Not. Journal of Neuroscience, 38(32), 7013–7019. DOI: 10.1523/JNEUROSCI.2485-17.2018
- Magnussen, S., & Greenlee, M. W. (1992). Retention and disruption of motion information in visual short-term memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(1), 151–156. DOI: 10.1037/0278-7393.18.1.151
- Mendoza-Halliday, D., & Martinez-Trujillo, J. C. (2017). Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nature Communications, 8,
15471 . DOI: 10.1038/ncomms15471 - Oberauer, K. (2019). Working Memory and Attention – A Conceptual Analysis and Review. Journal of Cognition, 2(1):
36 , pp. 1–23. DOI: 10.5334/joc.58 - Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129–1135. DOI: 10.1038/nn.2187
- Rademaker, R. L., Bloem, I. M., De Weerd, P., & Sack, A. T. (2015). The impact of interference on short-term memory for visual orientation. Journal of Experimental Psychology. Human Perception and Performance, 41(6), 1650–1665. DOI: 10.1037/xhp0000110
- Reddy, L., Kanwisher, N. G., & VanRullen, R. (2009). Attention and biased competition in multi-voxel object representations. Proceedings of the National Academy of Sciences, 106(50), 21447–21452. DOI: 10.1073/pnas.0907330106
- Saad, E., & Silvanto, J. (2013). How Visual Short-Term Memory Maintenance Modulates Subsequent Visual Aftereffects. Psychological Science, 24(5), 803–808. DOI: 10.1177/0956797612462140
- Scimeca, J. M., Kiyonaga, A., & D’Esposito, M. (2018). Reaffirming the Sensory Recruitment Account of Working Memory. Trends in Cognitive Sciences. DOI: 10.1016/j.tics.2017.12.007
- Sreenivasan, K. K., & Jha, A. P. (2007). Selective Attention Supports Working Memory Maintenance by Modulating Perceptual Processing of Distractors. Journal of Cognitive Neuroscience, 19(1), 32–41. DOI: 10.1162/jocn.2007.19.1.32
- Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14(4–8), 808–830. DOI: 10.1080/13506280500197397
- Xu, Y. (2017). Reevaluating the Sensory Account of Visual Working Memory Storage. Trends in Cognitive Sciences, 21(10), 794–815. DOI: 10.1016/j.tics.2017.06.013
- Yoon, J. H., Curtis, C. E., & D’Esposito, M. (2006). Differential effects of distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex. NeuroImage, 29(4), 1117–1126. DOI: 10.1016/j.neuroimage.2005.08.024
