References
- 1American Psychiatric Association. (2013).
Diagnostic and statistical manual of mental disorders (5th ed). Arlington, VA: Author. DOI: 10.1176/appi.books.9780890425596 - 2Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19, 1845–1853. DOI: 10.1162/jocn.2007.19.11.1845
- 3Ashkenazi, S., Golan, N., & Silverman, S. (2014). Domain-specific and domain-general effects on strategy selection in complex arithmetic: Evidences from ADHD and normally developed college students. Trends in Neuroscience and Education, 3(3–4), 93–105. DOI: 10.1016/j.tine.2014.08.002
- 4Ashkenazi, S., & Henik, A. (2010). Attentional networks in developmental dyscalculia. Behavioral and Brain Functions, 6, 2. DOI: 10.1186/1744-9081-6-2
- 5Ashkenazi, S., & Henik, A. (2012). Does attentional training improve numerical processing in developmental dyscalculia? Neuropsychology, 26(1), 45–56. DOI: 10.1037/a0026209
- 6Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44(4), 439–448. DOI: 10.1016/j.cortex.2007.08.008
- 7Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16, 35–46. DOI: 10.1111/j.1467-7687.2012.01190.x
- 8Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W., Swigart, A. G., & Menon, V. (2013). Visuo–spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51, 2305–2317. DOI: 10.1016/j.neuropsychologia.2013.06.031
- 9Atkinson, J., Campbell, F. W., & Francis, M. R. (1976). The magic number 4 ± 0: A new look at visual numerosity judgements. Perception, 5, 327–334. DOI: 10.1068/p050327
- 10Ben-Simon, A., Beyth-Marom, R., Inbar-Weiss, N., & Cohen, Y. (2008). Regulating the diagnosis of learning disability and the provision of test accommodations in institutions of higher education. Paper presented at the 34th Conference of the Association for Educational Assessment. Cambridge, UK.
- 11Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–293. DOI: 10.1207/S15326942DN1903_3
- 12Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18. DOI: 10.1111/j.1469-7610.2004.00374.x
- 13Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534–541. DOI: 10.1016/j.tics.2010.09.007
- 14Callejas, A., Lupiánez, J., & Tudela, P. (2004). The three attentional networks: On their independence and interactions. Brain and Cognition, 54(3), 225–227. DOI: 10.1016/j.bandc.2004.02.012
- 15Cipolotti, L. (1995). Multiple routes for reading words, why not numbers? Evidence from a case of Arabic numeral dyslexia. Cognitive Neuropsychology, 12(3), 313–342. DOI: 10.1080/02643299508252001
- 16Cohen Kadosh, R., Cohen Kadosh, K., Schuhmann, T., Kaas, A., Goebel, R., Henik, A., & Sack, A. T. (2007). Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Current Biology, 17(8), 689–693. DOI: 10.1016/j.cub.2007.02.056
- 17Cohen, Z. Z., Arend, I., Yuen, K., Naparstek, S., Gliksman, Y., Veksler, R., & Henik, A. (2018). Tactile enumeration: A case study of acalculia. Brain and Cognition, 127, 60–71. DOI: 10.1016/j.bandc.2018.10.001
- 18Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. DOI: 10.1016/j.neuron.2008.04.017
- 19Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. DOI: 10.1038/nrn755
- 20Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford, England: Oxford University Press.
- 21Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83–120.
- 22De Visscher, A., & Noël, M. P. (2013). A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50–70. DOI: 10.1016/j.cortex.2012.01.003
- 23Egeth, H. E., Leonard, C. J., & Palomares, M. (2008). The role of attention in subitizing: Is the magical number 1? Visual Cognition, 16, 463–473. DOI: 10.1080/13506280801937939
- 24Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in cognitive sciences, 8, 307–314. DOI: 10.1016/j.tics.2004.05.002
- 25Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. DOI: 10.1177/00222194040370010201
- 26Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 1343–1359. DOI: 10.1111/j.1467-8624.2007.01069.x
- 27Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986. DOI: 10.3758/s13428-011-0097-5
- 28Gevers, W., Cohen Kadosh, R., & Gebuis, T. (2016).
Sensory integration theory: An alternative to the approximate number system . In: Henik, A. (ed.), Continuous issues in numerical cognition: How many or how much, 405–418. Academic press. DOI: 10.1016/B978-0-12-801637-4.00018-4 - 29Gliksman, Y., & Henik, A. (2018). Conceptual size in developmental dyscalculia and dyslexia. Neuropsychology, 32, 190–198. DOI: 10.1037/neu0000432
- 30Gliksman, Y., Naparstek, S., Ifergane, G., & Henik, A. (2017). Visual and imagery magnitude comparisons are affected following left parietal lesion. Frontiers in Psychology, 8, 1622. DOI: 10.3389/fpsyg.2017.01622
- 31Gliksman, Y., Weinbach, N., & Henik, A. (2016). Alerting cues enhance the subitizing process. Acta Psychologica, 170, 139–145. DOI: 10.1016/j.actpsy.2016.06.013
- 32Jevons, W. S. (1871). The power of numerical discrimination. Nature, 3, 281–282. DOI: 10.1038/003281a0
- 33Kalanthroff, E., Naparstek, S., & Henik, A. (2013). Spatial processing in adults with attention deficit hyperactivity disorder. Neuropsychology, 27, 546–555. DOI: 10.1037/a0033655
- 34Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62, 498–525. DOI: 10.2307/1418556
- 35Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Goebel, S., Grabner, R., Rubinsten, O., et al. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4, 516. DOI: 10.3389/fpsyg.2013.00516
- 36Lamb, M. R., Robertson, L. C., & Knight, R. T. (1989). Attention and interference in the processing of global and local information: Effects of unilateral temporal-parietal junction lesions. Neuropsychologia, 27, 471–483. DOI: 10.1016/0028-3932(89)90052-3
- 37Lamb, M. R., Robertson, L. C., & Knight, R. T. (1990). Component mechanisms underlying the processing of hierarchically organized patterns: Inferences from patients with unilateral cortical lesions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 471–483. DOI: 10.1037/0278-7393.16.3.471
- 38Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309–324. DOI: 10.1016/j.jecp.2009.03.006
- 39Lau, H. C., Rogers, R. D., Haggard, P., & Passingham, R. E. (2004). Attention to intention. Science, 303(5661), 1208–1210. DOI: 10.1126/science.1090973
- 40Leibovich, T., & Henik, A. (2013). Magnitude processing in non-symbolic stimuli. Frontiers in Psychology, 4, 375. DOI: 10.3389/fpsyg.2013.00375
- 41Leibovich, T., & Henik, A. (2014). Comparing performance in discrete and continuous comparison tasks. The Quarterly Journal of Experimental Psychology, 67(5), 899–917. DOI: 10.1080/17470218.2013.837940
- 42Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From ‘sense of number’ to ‘sense of magnitude’ – the role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40. DOI: 10.1017/S0140525X16000960
- 43Lindsay, R. L., Tomazic, T., Levine, M. D., & Accardo, P. J. (2001). Attentional function as measured by a continuous performance task in children with dyscalculia. Journal of Developmental & Behavioral Pediatrics, 22(5), 287–292. DOI: 10.1097/00004703-200110000-00002
- 44Mandler, G., & Shebo, B. J. (1982). Subitizing: an analysis of its component processes. Journal of Experimental Psychology: General, 111, 1–22. DOI: 10.1037/0096-3445.111.1.1
- 45Mevorach, C., Humphreys, G. W., & Shalev, L. (2006). Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9(6), 740–742. DOI: 10.1038/nn1709
- 46Mevorach, C., Shalev, L., Allen, H. A., & Humphreys, G. W. (2009). The left intraparietal sulcus modulates the selection of low salient stimuli. Journal of Cognitive Neuroscience, 21(2), 303–315. DOI: 10.1162/jocn.2009.21044
- 47Molko, N., Cachia, A., Rivière, D., Mangin, J. F., Bruandet, M., Le Bihan, D., Dehaene, S., et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40(4), 847–858. DOI: 10.1016/S0896-6273(03)00670-6
- 48Moos, K., Vossel, S., Weidner, R., Sparing, R., & Fink, G. R. (2012). Modulation of top-down control of visual attention by cathodal tDCS over right IPS. The Journal of Neuroscience, 32(46), 16360–16368. DOI: 10.1523/JNEUROSCI.6233-11.2012
- 49Olivers, C. N., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16, 439–462. DOI: 10.1080/13506280701825861
- 50Petersen, S., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review Neuroscience, 35, 73–89. DOI: 10.1146/annurev-neuro-062111-150525
- 51Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Zorzi, M., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41. DOI: 10.1016/j.cognition.2010.03.012
- 52Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147–153. DOI: 10.1016/j.cognition.2011.05.007
- 53Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Reviews Neuroscience, 13, 25–42. DOI: 10.1146/annurev.ne.13.030190.000325
- 54Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042–R1043. DOI: 10.1016/j.cub.2007.10.013
- 55Raven, J., Raven, J., & Court, J. (1998). Raven’s progressive matrices and vocabulary scales. UK: Oxford Psychologists Press.
- 56Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. Psychological Bulletin, 135(6), 943–973. DOI: 10.1037/a0017327
- 57Robertson, I. H., Mattingley, J. B., Rorden, C., & Driver, J. (1998). Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 395, 169–172. DOI: 10.1038/25993
- 58Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39, 417–422. DOI: 10.1016/j.neuroimage.2007.08.045
- 59Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & Von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47, 2859–2865. DOI: 10.1016/j.neuropsychologia.2009.06.009
- 60Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19(5), 641–648. DOI: 10.1037/0894-4105.19.5.641
- 61Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: Heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences, 13(2), 92–99. DOI: 10.1016/j.tics.2008.11.002
- 62Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. DOI: 10.3389/neuro.09.051.2009
- 63Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280–291. DOI: 10.1111/j.1467-7687.2010.00976.x
- 64Shalev, R. S., & Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology, 24(5), 337–342. DOI: 10.1016/S0887-8994(00)00258-7
- 65Shany, M., Lahman, D., Shalem, Z., Bahat, A., & Zeiger, T. (2006).
Alef-Tav: A set for diagnosing disabilities in reading and writing processes according to Israeli norms . Tel Aviv, Israel: Mofet Institute and Nitzan. - 66Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60, 973–980. DOI: 10.2307/1131037
- 67Tanzer, M., Weinbach, N., Mardo, E., Henik, A., & Avidan, G. (2016). Phasic alertness enhances global processing in congenital prosopagnosia – a possible paradigm for rehabilitation? Neuropsychologia, 89, 299–308. DOI: 10.1016/j.neuropsychologia.2016.06.032
- 68Thiel, C. M., & Fink, G. R. (2007). Visual and auditory alertness: Modality-specific and supramodal neural mechanisms and their modulation by nicotine. Journal of Neurophysiology, 97, 2758–2768. DOI: 10.1152/jn.00017.2007
- 69Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80–102. DOI: 10.1037/0033-295X.101.1.80
- 70Van Kleeck, M. H. (1989). Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: New data and a meta-analysis of previous studies. Neuropsychologia, 27(9), 1165–1178. DOI: 10.1016/0028-3932(89)90099-7
- 71Van Vleet, T. M., Hoang-duc, A. K., DeGutis, J., & Robertson, L. C. (2011). Modulation of non-spatial attention and the global/local processing bias. Neuropsychologia, 49(3), 352–359. DOI: 10.1016/j.neuropsychologia.2010.11.021
- 72Weinbach, N., & Henik, A. (2011). Phasic alertness can modulate executive control by enhancing global processing of visual stimuli. Cognition, 121, 454–458. DOI: 10.1016/j.cognition.2011.08.010
- 73Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291–298. DOI: 10.1177/1745691611406923
