Have a personal or library account? Click to login
Readiness for Perception and Action: Towards a More Mechanistic Understanding of Phasic Alertness Cover

Readiness for Perception and Action: Towards a More Mechanistic Understanding of Phasic Alertness

Open Access
|Jan 2025

References

  1. 1Adams, C. K., & Behar, I. (1966). Stimulus change properties of the RT ready signal. Psychonomic Science, 6, 389390. 10.3758/BF03330951
  2. 2Asanowicz, D., & Marzecová, A. (2017). Differential effects of phasic and tonic alerting on the efficiency of executive attention. Acta Psychologica, 176, 5870. 10.1016/j.actpsy.2017.03.004
  3. 3Ásgeirsson, Á. G., & Nieuwenhuis, S. (2017). No arousal-biased competition in focused visuospatial attention. Cognition, 168, 191204. 10.1016/j.cognition.2017.07.001
  4. 4Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403450. 10.1146/annurev.neuro.28.061604.135709
  5. 5Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46(9), 13091320. 10.1016/S0006-3223(99)00140-7
  6. 6Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437443. 10.1016/j.tics.2012.06.010
  7. 7Barra, J., Auclair, L., Charvillat, A., Vidal, M., & Pérennou, D. (2015). Postural control system influences intrinsic alerting state. Neuropsychology, 29(2), 226. 10.1037/neu0000174
  8. 8Bernstein, I. H., Clark, M. H., & Edelstein, B. A. (1969). Effects of an auditory signal on visual reaction time. Journal of Experimental Psychology, 80(3, Pt.1), 567569. 10.1037/h0027444
  9. 9Bertelson, P., & Tisseyr, F. (1969). The time-course of preparation: Confirmatory results with visual and auditory warning signals. Acta Psychologica, 145154. 10.1016/0001-6918(69)90047-X
  10. 10Botta, F., Lupiáñez, J., & Chica, A. B. (2014). When endogenous spatial attention improves conscious perception: Effects of alerting and bottom-up activation. Consciousness and Cognition, 23, 6373. 10.1016/j.concog.2013.12.003
  11. 11Brown, S. B. R. E., Tona, K.-D., van Noorden, M. S., Giltay, E. J., van der Wee, N. J. A., & Nieuwenhuis, S. (2015). Noradrenergic and cholinergic effects on speed and sensitivity measures of phasic alerting. Behavioral Neuroscience, 129(1), 4249. 10.1037/bne0000030
  12. 12Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523547. 10.1037/0033-295X.97.4.523
  13. 13Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291328. 10.1037/0033-295X.112.2.291
  14. 14Bundesen, C., Vangkilde, S., & Habekost, T. (2015). Components of visual bias: A multiplicative hypothesis: Components of visual bias. Annals of the New York Academy of Sciences, 1339(1), 116124. 10.1111/nyas.12665
  15. 15Calabrese, E. J. (2008). Stress biology and hormesis: The Yerkes–Dodson Law in psychology—A special case of the hormesis dose response. Critical Reviews in Toxicology, 38(5), 453462. 10.1080/10408440802004007
  16. 16Callejas, A., Lupiàñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167(1), 2737. 10.1007/s00221-005-2365-z
  17. 17Chandrakumar, D., Keage, H. A. D., Gutteridge, D., Dorrian, J., Banks, S., & Loetscher, T. (2019). Interactions between spatial attention and alertness in healthy adults: A meta-analysis. Cortex, 119, 6173. 10.1016/j.cortex.2019.03.016
  18. 18Chica, A. B., Lasaponara, S., Chanes, L., Valero-Cabré, A., Doricchi, F., Lupiáñez, J., & Bartolomeo, P. (2011). Spatial attention and conscious perception: The role of endogenous and exogenous orienting. Attention, Perception, & Psychophysics, 73(4), 10651081. 10.3758/s13414-010-0082-6
  19. 19Correa, Á., Cappucci, P., Nobre, A. C., & Lupiáñez, J. (2010). The Two Sides of Temporal Orienting: Facilitating Perceptual Selection, Disrupting Response Selection. Experimental Psychology, 57(2), 142148. 10.1027/1618-3169/a000018
  20. 20Correa, Á., Lupiáñez, J., Milliken, B., & Tudela, P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Perception & Psychophysics, 66(2), 264278. 10.3758/BF03194878
  21. 21Correa, Á., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic Bulletin & Review, 12(2), 328334. 10.3758/BF03196380
  22. 22Coull, J. T., & Nobre, A. C. (1998). Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI. The Journal of Neuroscience, 18(18), 74267435. 10.1523/JNEUROSCI.18-18-07426.1998
  23. 23Coull, J. T., Nobre, A. C., & Frith, C. D. (2001). The Noradrenergic 2 Agonist Clonidine Modulates Behavioural and Neuroanatomical Correlates of Human Attentional Orienting and Alerting. Cerebral Cortex, 11(1), 7384. 10.1093/cercor/11.1.73
  24. 24Davis, R., & Green, F. A. (1969). Intersensory differences in the effect of warning signals on reaction time. Acta Psychologica, 30, 155167. 10.1016/0001-6918(69)90048-1
  25. 25Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18(1), 193222. 10.1146/annurev.ne.18.030195.001205
  26. 26Dietze, N., Horstmann, G., & Poth, C. H. (2024). When alerting comes by surprise. Acta Psychologica, 245, 104239. 10.1016/j.actpsy.2024.104239
  27. 27Dietze, N., & Poth, C. H. (2022). Phasic alertness is unaffected by the attentional set for orienting. Journal of Cognition, 5(1), 46. 10.5334/joc.242
  28. 28Dietze, N., & Poth, C. H. (2023). Vision rivals audition in alerting humans for fast action. Acta Psychologica, 238, 103991. 10.1016/j.actpsy.2023.103991
  29. 29Dietze, N., & Poth, C. H. (2024). Phasic alerting in compound visual search tasks. Attention, Perception, & Psychophysics. 10.3758/s13414-024-02844-3
  30. 30Dietze, N., Recker, L., & Poth, C. H. (2023). Warning signals only support the first action in a sequence. Cognitive Research: Principles and Implications. 10.1186/s41235-023-00484-z
  31. 31Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433458. 10.1037/0033-295X.96.3.433
  32. 32Dykstra, A. R., Cariani, P. A., & Gutschalk, A. (2017). A roadmap for the study of conscious audition and its neural basis. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1714), 20160103. 10.1098/rstb.2016.0103
  33. 33Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014). Intrinsic Fluctuations in Sustained Attention and Distractor Processing. The Journal of Neuroscience, 34(5), 17241730. 10.1523/JNEUROSCI.2658-13.2014
  34. 34Fan, J., Mccandliss, B. D., Fossella, J., Flombaum, J., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471479. 10.1016/j.neuroimage.2005.02.004
  35. 35Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340347. 10.1162/089892902317361886
  36. 36Festa-Martino, E., Ott, B. R., & Heindel, W. C. (2004). Interactions Between Phasic Alerting and Spatial Orienting: Effects of Normal Aging and Alzheimer’s Disease, 18(2), 258268. 10.1037/0894-4105.18.2.258
  37. 37Fischer, R., Plessow, F., & Kiesel, A. (2010). Auditory Warning Signals Affect Mechanisms of Response Selection: Evidence from a Simon Task. Experimental Psychology, 57(2), 8997. 10.1027/1618-3169/a000012
  38. 38Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research: Sustained attention. Annals of the New York Academy of Sciences, 1396(1), 7091. 10.1111/nyas.13318
  39. 39Fuentes, L. J., & Campoy, G. (2008). The time course of alerting effect over orienting in the attention network test. Experimental Brain Research, 185(4), 667672. 10.1007/s00221-007-1193-8
  40. 40Grabenhorst, M., Maloney, L. T., Poeppel, D., & Michalareas, G. (2021). Two sources of uncertainty independently modulate temporal expectancy. Proceedings of the National Academy of Sciences, 118(16), e2019342118. 10.1073/pnas.2019342118
  41. 41Grabenhorst, M., Michalareas, G., Maloney, L. T., & Poeppel, D. (2019). The anticipation of events in time. Nature Communications, 10(1), 5802. 10.1038/s41467-019-13849-0
  42. 42Hackley, S. A. (2009). The speeding of voluntary reaction by a warning signal. Psychophysiology, 46(2), 225233. 10.1111/j.1469-8986.2008.00716.x
  43. 43Hackley, S. A., Langner, R., Rolke, B., Erb, M., Grodd, W., & Ulrich, R. (2009). Separation of phasic arousal and expectancy effects in a speeded reaction time task via fMRI. Psychophysiology, 46(1), 163171. 10.1111/j.1469-8986.2008.00722.x
  44. 44Hackley, S. A., & Valle-Inclán, F. (1998). Automatic alerting does not speed late motoric processes in a reaction-time task. Nature, 391(6669), 786788. 10.1038/35849
  45. 45Hackley, S. A., & Valle-Inclán, F. (1999). Accessory Stimulus Effects on Response Selection: Does Arousal Speed Decision Making? Journal of Cognitive Neuroscience, 11(3), 321329. 10.1162/089892999563427
  46. 46Hackley, S. A., & Valle-Inclán, F. (2003). Which stages of processing are speeded by a warning signal? Biological Psychology, 64(1–2), 2745. 10.1016/S0301-0511(03)00101-7
  47. 47Han, T., & Proctor, R. W. (2022). Effects of a neutral warning signal on spatial two-choice reactions. Quarterly Journal of Experimental Psychology, 75(4), 754764. 10.1177/17470218211037604
  48. 48Hancock, P. A. (2017). On the Nature of Vigilance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(1), 3543. 10.1177/0018720816655240
  49. 49Harvey, N. (1980). Non-informative effects of stimuli functioning as cues. Quarterly Journal of Experimental Psychology, 32(3), 413425. 10.1080/14640748008401835
  50. 50Haupt, M., Jödecke, S., Srowig, A., Napiórkowski, N., Preul, C., Witte, O. W., & Finke, K. (2021). Phasic alerting increases visual processing speed in amnestic mild cognitive impairment. Neurobiology of Aging, 102, 2331. 10.1016/j.neurobiolaging.2021.01.031
  51. 51Haupt, M., Ruiz-Rizzo, A. L., Sorg, C., & Finke, K. (2019). Phasic alerting effects on visual processing speed are associated with intrinsic functional connectivity in the cingulo-opercular network. NeuroImage, 196, 216226. 10.1016/j.neuroimage.2019.04.019
  52. 52Herzog, M. H., Drissi-Daoudi, L., & Doerig, A. (2020). All in Good Time: Long-Lasting Postdictive Effects Reveal Discrete Perception. Trends in Cognitive Sciences, 24(10), 826837. 10.1016/j.tics.2020.07.001
  53. 53Hogendoorn, H. (2022). Perception in real-time: Predicting the present, reconstructing the past. Trends in Cognitive Sciences, 26(2), 128141. 10.1016/j.tics.2021.11.003
  54. 54Horstmann, G. (2015). The surprise-attention link: A review: The surprise-attention link. Annals of the New York Academy of Sciences, 1339(1), 106115. 10.1111/nyas.12679
  55. 55Jankovic, N., Di Lollo, V., & Spalek, T. M. (2022). Alerting effects occur in simple—But not in compound—Visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 48(8), 901912. 10.1037/xhp0001011
  56. 56Jepma, M., Wagenmakers, E.-J., Band, G. P. H., & Nieuwenhuis, S. (2009). The Effects of Accessory Stimuli on Information Processing: Evidence from Electrophysiology and a Diffusion Model Analysis. Journal of Cognitive Neuroscience, 21(5), 847864. 10.1162/jocn.2009.21063
  57. 57Kahan, T. A., & Zhang, H. (2019). Ready to be distracted: Further evidence that the alerting-congruency interaction requires stimulus-response directional associations. Visual Cognition, 27(9–10), 760767. 10.1080/13506285.2019.1680586
  58. 58Karpouzian-Rogers, T., Heindel, W. C., Ott, B. R., Tremont, G., & Festa, E. K. (2020). Phasic alerting enhances spatial orienting in healthy aging but not in mild cognitive impairment. Neuropsychology, 34(2), 144154. 10.1037/neu0000593
  59. 59Keuss, P. J. G., van der Zee, F., & van den Bree, M. B. M. (1990). Auditory accessory effects on visual processing. Acta Psychologica, 75(1), 4154. 10.1016/0001-6918(90)90065-N
  60. 60Krause, A., & Poth, C. H. (2023). Maintaining eye fixation relieves pressure of cognitive action control. iScience 26, 107520. 10.1016/j.isci.2023.107520
  61. 61Kusnir, F., Chica, A. B., Mitsumasu, M. A., & Bartolomeo, P. (2011). Phasic auditory alerting improves visual conscious perception. Consciousness and Cognition, 20(4), 12011210. 10.1016/j.concog.2011.01.012
  62. 62Lawrence, M. A., & Klein, R. M. (2013). Isolating exogenous and endogenous modes of temporal attention. Journal of Experimental Psychology: General, 142(2), 560572. 10.1037/a0029023
  63. 63Levison, M., & Restle, F. (1968). Invalid results from the method of constant stimuli. Perception & Psychophysics, 4(2), 121122. 10.3758/BF03209522
  64. 64Li, Q., Liu, P., Huang, S., & Huang, X. (2018). The effect of phasic alertness on temporal precision. Attention, Perception, & Psychophysics, 80(1), 262274. 10.3758/s13414-017-1418-2
  65. 65Lin, Z., & Lu, Z.-L. (2016). Automaticity of phasic alertness: Evidence for a three-component model of visual cueing. Attention, Perception, & Psychophysics, 78, 19481967. 10.3758/s13414-016-1124-5
  66. 66Lippert, M., Logothetis, N. K., & Kayser, C. (2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173, 102109. 10.1016/j.brainres.2007.07.050
  67. 67Lu, S., Wang, W., & Cai, Y. (2014). Temporal expectancy modulates phasic alerting in both detection and discrimination tasks. Psychonomic Bulletin & Review, 22(1), 235241. 10.3758/s13423-014-0664-8
  68. 68Luce, R. D. (1991). Response Times. Oxford University Press. 10.1093/acprof:oso/9780195070019.001.0001
  69. 69Luna, F. G., Marino, J., Roca, J., & Lupiáñez, J. (2018). Executive and arousal vigilance decrement in the context of the attentional networks: The ANTI-Vea task. Journal of Neuroscience methods, 306, 7787. 10.1016/j.jneumeth.2018.05.011
  70. 70MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24(5), 637651. 10.1037/a0019803
  71. 71Martella, D., Manzanares, S., Campoy, G., Roca, J., Antúnez, C., & Fuentes, L. J. (2014). Phasic and tonic alerting in mild cognitive impairment: A preliminary study. Experimental Gerontology, 49, 3539. 10.1016/j.exger.2013.11.001
  72. 72Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1). 10.5334/joc.18
  73. 73Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J., & Finke, K. (2010). The influence of alertness on spatial and nonspatial components of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 3856. 10.1037/a0017602
  74. 74McBurney-Lin, J., Lu, J., Zuo, Y., & Yang, H. (2019). Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neuroscience & Biobehavioral Reviews, 105, 190199. 10.1016/j.neubiorev.2019.06.009
  75. 75McConnell, M. M., & Shore, D. I. (2011). Mixing measures: Testing an assumption of the attention network test. Attention, Perception, & Psychophysics, 73(4), 10961107. 10.3758/s13414-010-0085-3
  76. 76McCormick, C. R., Redden, R. S., Hurst, A. J., & Klein, R. M. (2019). On the selection of endogenous and exogenous signals. Royal Society Open Science, 6(11), 190134. 10.1098/rsos.190134
  77. 77Meiran, N., & Chorev, Z. (2005). Phasic Alertness and the Residual Task-Switching Cost. Experimental Psychology, 52(2), 109124. 10.1027/1618-3169.52.2.109
  78. 78Meyer, W.-U., Niepel, M., Rudolph, U., & Schützwohl, A. (1991). An experimental analysis of surprise. Cognition & Emotion, 5(4), 295311. 10.1080/02699939108411042
  79. 79Mulder, M. J., & van Maanen, L. (2013). Are accuracy and reaction time affected via different processes? PLoS One, 8(11), e80222. 10.1371/journal.pone.0080222
  80. 80Näätänen, R. (1971). Non-aging fore-periods and simple reaction time. Acta Psychologica, 35(4), 316327. 10.1016/0001-6918(71)90040-0
  81. 81Näätänen, R., Muranen, V., & Merisalo, A. (1974). Timing of expectancy peak in simple reaction time situation. Acta Psychologica, 38(6), 461470. 10.1016/0001-6918(74)90006-7
  82. 82Niepel, M., Rudolph, U., Schützwohl, A., & Meyer, W.-U. (1994). Temporal characteristics of the surprise reaction induced by schema-discrepant visual and auditory events. Cognition & Emotion, 8(5), 433452. 10.1080/02699939408408951
  83. 83Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus—Norepinephrine system. Psychological Bulletin, 131(4), 510532. 10.1037/0033-2909.131.4.510
  84. 84Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response: P3 and orienting response. Psychophysiology, 48(2), 162175. 10.1111/j.1469-8986.2010.01057.x
  85. 85Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in Neurobiology, 17(4), 465470. 10.1016/j.conb.2007.07.006
  86. 86Norman, D. A., & Shallice, T. (1986). Attention to Action: Willed and Automatic Control of Behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Hrsg.), Consciousness and Self-Regulation (S. 118). Springer US. 10.1007/978-1-4757-0629-1_1
  87. 87Okazawa, G., Sha, L., Purcell, B. A., & Kiani, R. (2018). Psychophysical reverse correlation reflects both sensory and decision-making processes. Nature Communications, 9(1), 3479. 10.1038/s41467-018-05797-y
  88. 88Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2006). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117(9), 18851901. 10.1016/j.clinph.2006.01.017
  89. 89Pashler, H. E. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220244. 10.1037//0033-2909.116.2.220
  90. 90Petersen, A., Petersen, A. H., Bundesen, C., Vangkilde, S., & Habekost, T. (2017). The effect of phasic auditory alerting on visual perception. Cognition, 165, 7381. 10.1016/j.cognition.2017.04.004
  91. 91Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 7389. 10.1146/annurev-neuro-062111-150525
  92. 92Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., Valentino, R., Berridge, C., Chandler, D. J., Waterhouse, B., & Sara, S. J. (2020). Locus coeruleus: A new look at the blue spot. Nature Reviews Neuroscience, 21(11), 644659. 10.1038/s41583-020-0360-9
  93. 93Posner, M. I. (1978). Chronometric explorations of mind. Lawrence Erlbaum.
  94. 94Posner, M. I. (2008). Measuring Alertness. Annals of the New York Academy of Sciences, 1129(1), 193199. 10.1196/annals.1417.011
  95. 95Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391408. 10.1037/h0031333
  96. 96Posner, M. I., Klein, R., Summers, J., & Buggie, S. (1973). On the selection of signals. Memory & Cognition, 1(1), 212. 10.3758/BF03198062
  97. 97Posner, M. I., & Petersen, S. E. (1990). The Attention System of the Human Brain. Annual Review of Neuroscience, 13(1), 2542. 10.1146/annurev.ne.13.030190.000325
  98. 98Poth, C. H. (2020). Phasic alertness reverses the beneficial effects of accessory stimuli on choice reaction. Attention, Perception, & Psychophysics, 82(3), 11961204. 10.3758/s13414-019-01825-1
  99. 99Poth, C. H. (2021). Urgency forces stimulus-driven action by overcoming cognitive control. ELife, 10, e73682. 10.7554/eLife.73682
  100. 100Poth, C. H., & Dietze, N. (in prep.). Phasic alertness requires top-down target expectation.
  101. 101Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9. 10.3389/fnsys.2015.00176
  102. 102Poth, C. H., Petersen, A., Bundesen, C., & Schneider, W. X. (2014). Effects of monitoring for visual events on distinct components of attention. Frontiers in Psychology, 5. 10.3389/fpsyg.2014.00930
  103. 103Poth, C. H., & Schneider, W. X. (2016). Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report. Frontiers in Psychology, 7. 10.3389/fpsyg.2016.01440
  104. 104Poth, C. H., & Schneider, W. X. (2018). Attentional competition across saccadic eye movements. Acta Psychologica, 190, 2737. 10.1016/j.actpsy.2018.06.011
  105. 105Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in cognitive sciences, 20(4), 260281. 10.1016/j.tics.2016.01.007
  106. 106Rausch, S. M., Gramling, S. E., & Auerbach, S. M. (2006). Effects of a single session of large-group meditation and progressive muscle relaxation training on stress reduction, reactivity, and recovery. International Journal of Stress Management, 13(3), 273. 10.1037/1072-5245.13.3.273
  107. 107Recanzone, G. H. (2009). Interactions of auditory and visual stimuli in space and time. Hearing Research, 258(1–2), 8999. 10.1016/j.heares.2009.04.009
  108. 108Rolke, B. (2008). Temporal preparation facilitates perceptual identification of letters. Perception & Psychophysics, 70(7), 13051313. 10.3758/PP.70.7.1305
  109. 109Salinas, E., Steinberg, B. R., Sussman, L. A., Fry, S. M., Hauser, C. K., Anderson, D. D., & Stanford, T. R. (2019). Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. ELife, 8, e46359. 10.7554/eLife.46359
  110. 110Sanders, A. F. (1980). 20 Stage Analysis of Reaction Processes. In Advances in Psychology (Bd. 1, S. 331354). Elsevier. 10.1016/S0166-4115(08)61955-X
  111. 111Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211223. 10.1038/nrn2573
  112. 112Schneider, D. W. (2018). Alertness and cognitive control: Testing the early onset hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 44(5), 756766. 10.1037/xhp0000497
  113. 113Schneider, D. W. (2019a). Alertness and cognitive control: Is there a spatial attention constraint? Attention, Perception, & Psychophysics, 81(1), 119136.
  114. 114Schneider, D. W. (2019b). Alertness and cognitive control: Testing the spatial grouping hypothesis. Attention, Perception, & Psychophysics, 81(6), 19131925. 10.3758/s13414-019-01764-x
  115. 115Schneider, D. W. (2020). Alertness and cognitive control: Interactions in the spatial Stroop task. Attention, Perception, & Psychophysics, 82(5), 22572270. 10.3758/s13414-020-01993-5
  116. 116Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130060. 10.1098/rstb.2013.0060
  117. 117See, J. E., Howe, S. R., Warm, J. S., & Dember, W. N. (1995). Meta-analysis of the sensitivity decrement in vigilance. Psychological Bulletin, 117(2), 230249. 10.1037/0033-2909.117.2.230
  118. 118Seibold, V. C. (2018). Do alerting signals increase the size of the attentional focus?. Attention, Perception, & Psychophysics, 80, 402425. 10.3758/s13414-017-1451-1
  119. 119Steghaus, S., & Poth, C. H. (2022). Assessing momentary relaxation using the Relaxation State Questionnaire (RSQ). Scientific Reports, 12(1), 16341. 10.1038/s41598-022-20524-w
  120. 120Steghaus, S., & Poth, C. H. (2024). Feeling tired versus feeling relaxed: Two faces of low physiological arousal. Plos ONE, 19(9), e0310034. 10.1371/journal.pone.0310034
  121. 121Sturm, W., & Willmes, K. (2001). On the Functional Neuroanatomy of Intrinsic and Phasic Alertness. NeuroImage, 14(1), S76S84. 10.1006/nimg.2001.0839
  122. 122Tona, K.-D., Murphy, Peter. R., Brown, S. B. R. E., & Nieuwenhuis, S. (2016). The accessory stimulus effect is mediated by phasic arousal: A pupillometry study: Phasic arousal and the AS effect. Psychophysiology, 53(7), 11081113. 10.1111/psyp.12653
  123. 123Torre, V., Ashmore, J., Lamb, T., & Menini, A. (1995). Transduction and adaptation in sensory receptor cells. The Journal of Neuroscience, 15(12), 77577768. 10.1523/JNEUROSCI.15-12-07757.1995
  124. 124Treisman, A. M., & Gelade, G. (1980). A Feature-Integration Theory of Attention. Cognitive Psychology, 12(1), 97136. 10.1016/0010-0285(80)90005-5
  125. 125Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601615. 10.3758/s13415-016-0417-4
  126. 126van Ede, F., de Lange, F. P., & Maris, E. (2012). Attentional cues affect accuracy and reaction time via different cognitive and neural processes. Journal of Neuroscience, 32(30), 1040810412. 10.1523/JNEUROSCI.1337-12.2012
  127. 127Vangkilde, S., Coull, J. T., & Bundesen, C. (2012). Great expectations: Temporal expectation modulates perceptual processing speed. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 11831191. 10.1037/a0026343
  128. 128Vangkilde, S., Petersen, A., & Bundesen, C. (2013). Temporal expectancy in the context of a theory of visual attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628). 10.1098/rstb.2013.0054
  129. 129Weinbach, N., & Henik, A. (2012a). Temporal orienting and alerting – the same or different? Frontiers in Psychology, 3(26). 10.3389/fpsyg.2012.00236
  130. 130Weinbach, N., & Henik, A. (2012b). The relationship between alertness and executive control. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 15301540. 10.1037/a0027875
  131. 131Weinbach, N., & Henik, A. (2013). The interaction between alerting and executive control: Dissociating phasic arousal and temporal expectancy. Attention, Perception, & Psychophysics, 75(7), 13741381. 10.3758/s13414-013-0501-6
  132. 132Wiegand, I., Petersen, A., Finke, K., Bundesen, C., Lansner, J., & Habekost, T. (2017). Behavioral and brain measures of phasic alerting effects on visual attention. Frontiers in Human Neuroscience, 11(176). 10.3389/fnhum.2017.00176
  133. 133Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202238. 10.3758/BF03200774
  134. 134Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 10601092. 10.3758/s13423-020-01859-9
  135. 135Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459482. 10.1002/cne.920180503
  136. 136Zhou, J., Benson, N. C., Kay, K. N., & Winawer, J. (2018). Compressive Temporal Summation in Human Visual Cortex. The Journal of Neuroscience, 38(3), 691709. 10.1523/JNEUROSCI.1724-17.2017
DOI: https://doi.org/10.5334/joc.426 | Journal eISSN: 2514-4820
Language: English
Submitted on: Aug 17, 2017
Accepted on: Nov 3, 2017
Published on: Jan 21, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Christian H. Poth, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.