References
- 1Adams, C. K., & Behar, I. (1966). Stimulus change properties of the RT ready signal. Psychonomic Science, 6, 389–390. 10.3758/BF03330951
- 2Asanowicz, D., & Marzecová, A. (2017). Differential effects of phasic and tonic alerting on the efficiency of executive attention. Acta Psychologica, 176, 58–70. 10.1016/j.actpsy.2017.03.004
- 3Ásgeirsson, Á. G., & Nieuwenhuis, S. (2017). No arousal-biased competition in focused visuospatial attention. Cognition, 168, 191–204. 10.1016/j.cognition.2017.07.001
- 4Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403–450. 10.1146/annurev.neuro.28.061604.135709
- 5Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46(9), 1309–1320. 10.1016/S0006-3223(99)00140-7
- 6Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. 10.1016/j.tics.2012.06.010
- 7Barra, J., Auclair, L., Charvillat, A., Vidal, M., & Pérennou, D. (2015). Postural control system influences intrinsic alerting state. Neuropsychology, 29(2), 226. 10.1037/neu0000174
- 8Bernstein, I. H., Clark, M. H., & Edelstein, B. A. (1969). Effects of an auditory signal on visual reaction time. Journal of Experimental Psychology, 80(3, Pt.1), 567–569. 10.1037/h0027444
- 9Bertelson, P., & Tisseyr, F. (1969). The time-course of preparation: Confirmatory results with visual and auditory warning signals. Acta Psychologica, 145–154. 10.1016/0001-6918(69)90047-X
- 10Botta, F., Lupiáñez, J., & Chica, A. B. (2014). When endogenous spatial attention improves conscious perception: Effects of alerting and bottom-up activation. Consciousness and Cognition, 23, 63–73. 10.1016/j.concog.2013.12.003
- 11Brown, S. B. R. E., Tona, K.-D., van Noorden, M. S., Giltay, E. J., van der Wee, N. J. A., & Nieuwenhuis, S. (2015). Noradrenergic and cholinergic effects on speed and sensitivity measures of phasic alerting. Behavioral Neuroscience, 129(1), 42–49. 10.1037/bne0000030
- 12Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. 10.1037/0033-295X.97.4.523
- 13Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291–328. 10.1037/0033-295X.112.2.291
- 14Bundesen, C., Vangkilde, S., & Habekost, T. (2015). Components of visual bias: A multiplicative hypothesis: Components of visual bias. Annals of the New York Academy of Sciences, 1339(1), 116–124. 10.1111/nyas.12665
- 15Calabrese, E. J. (2008). Stress biology and hormesis: The Yerkes–Dodson Law in psychology—A special case of the hormesis dose response. Critical Reviews in Toxicology, 38(5), 453–462. 10.1080/10408440802004007
- 16Callejas, A., Lupiàñez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167(1), 27–37. 10.1007/s00221-005-2365-z
- 17Chandrakumar, D., Keage, H. A. D., Gutteridge, D., Dorrian, J., Banks, S., & Loetscher, T. (2019). Interactions between spatial attention and alertness in healthy adults: A meta-analysis. Cortex, 119, 61–73. 10.1016/j.cortex.2019.03.016
- 18Chica, A. B., Lasaponara, S., Chanes, L., Valero-Cabré, A., Doricchi, F., Lupiáñez, J., & Bartolomeo, P. (2011). Spatial attention and conscious perception: The role of endogenous and exogenous orienting. Attention, Perception, & Psychophysics, 73(4), 1065–1081. 10.3758/s13414-010-0082-6
- 19Correa, Á., Cappucci, P., Nobre, A. C., & Lupiáñez, J. (2010). The Two Sides of Temporal Orienting: Facilitating Perceptual Selection, Disrupting Response Selection. Experimental Psychology, 57(2), 142–148. 10.1027/1618-3169/a000018
- 20Correa, Á., Lupiáñez, J., Milliken, B., & Tudela, P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Perception & Psychophysics, 66(2), 264–278. 10.3758/BF03194878
- 21Correa, Á., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic Bulletin & Review, 12(2), 328–334. 10.3758/BF03196380
- 22Coull, J. T., & Nobre, A. C. (1998). Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI. The Journal of Neuroscience, 18(18), 7426–7435. 10.1523/JNEUROSCI.18-18-07426.1998
- 23Coull, J. T., Nobre, A. C., & Frith, C. D. (2001). The Noradrenergic 2 Agonist Clonidine Modulates Behavioural and Neuroanatomical Correlates of Human Attentional Orienting and Alerting. Cerebral Cortex, 11(1), 73–84. 10.1093/cercor/11.1.73
- 24Davis, R., & Green, F. A. (1969). Intersensory differences in the effect of warning signals on reaction time. Acta Psychologica, 30, 155–167. 10.1016/0001-6918(69)90048-1
- 25Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18(1), 193–222. 10.1146/annurev.ne.18.030195.001205
- 26Dietze, N., Horstmann, G., & Poth, C. H. (2024). When alerting comes by surprise. Acta Psychologica, 245, 104239. 10.1016/j.actpsy.2024.104239
- 27Dietze, N., & Poth, C. H. (2022). Phasic alertness is unaffected by the attentional set for orienting. Journal of Cognition, 5(1), 46. 10.5334/joc.242
- 28Dietze, N., & Poth, C. H. (2023). Vision rivals audition in alerting humans for fast action. Acta Psychologica, 238, 103991. 10.1016/j.actpsy.2023.103991
- 29Dietze, N., & Poth, C. H. (2024). Phasic alerting in compound visual search tasks. Attention, Perception, & Psychophysics. 10.3758/s13414-024-02844-3
- 30Dietze, N., Recker, L., & Poth, C. H. (2023). Warning signals only support the first action in a sequence. Cognitive Research: Principles and Implications. 10.1186/s41235-023-00484-z
- 31Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. 10.1037/0033-295X.96.3.433
- 32Dykstra, A. R., Cariani, P. A., & Gutschalk, A. (2017). A roadmap for the study of conscious audition and its neural basis. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1714), 20160103. 10.1098/rstb.2016.0103
- 33Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014). Intrinsic Fluctuations in Sustained Attention and Distractor Processing. The Journal of Neuroscience, 34(5), 1724–1730. 10.1523/JNEUROSCI.2658-13.2014
- 34Fan, J., Mccandliss, B. D., Fossella, J., Flombaum, J., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479. 10.1016/j.neuroimage.2005.02.004
- 35Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347. 10.1162/089892902317361886
- 36Festa-Martino, E., Ott, B. R., & Heindel, W. C. (2004). Interactions Between Phasic Alerting and Spatial Orienting: Effects of Normal Aging and Alzheimer’s Disease, 18(2), 258–268. 10.1037/0894-4105.18.2.258
- 37Fischer, R., Plessow, F., & Kiesel, A. (2010). Auditory Warning Signals Affect Mechanisms of Response Selection: Evidence from a Simon Task. Experimental Psychology, 57(2), 89–97. 10.1027/1618-3169/a000012
- 38Fortenbaugh, F. C., DeGutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research: Sustained attention. Annals of the New York Academy of Sciences, 1396(1), 70–91. 10.1111/nyas.13318
- 39Fuentes, L. J., & Campoy, G. (2008). The time course of alerting effect over orienting in the attention network test. Experimental Brain Research, 185(4), 667–672. 10.1007/s00221-007-1193-8
- 40Grabenhorst, M., Maloney, L. T., Poeppel, D., & Michalareas, G. (2021). Two sources of uncertainty independently modulate temporal expectancy. Proceedings of the National Academy of Sciences, 118(16),
e2019342118 . 10.1073/pnas.2019342118 - 41Grabenhorst, M., Michalareas, G., Maloney, L. T., & Poeppel, D. (2019). The anticipation of events in time. Nature Communications, 10(1), 5802. 10.1038/s41467-019-13849-0
- 42Hackley, S. A. (2009). The speeding of voluntary reaction by a warning signal. Psychophysiology, 46(2), 225–233. 10.1111/j.1469-8986.2008.00716.x
- 43Hackley, S. A., Langner, R., Rolke, B., Erb, M., Grodd, W., & Ulrich, R. (2009). Separation of phasic arousal and expectancy effects in a speeded reaction time task via fMRI. Psychophysiology, 46(1), 163–171. 10.1111/j.1469-8986.2008.00722.x
- 44Hackley, S. A., & Valle-Inclán, F. (1998). Automatic alerting does not speed late motoric processes in a reaction-time task. Nature, 391(6669), 786–788. 10.1038/35849
- 45Hackley, S. A., & Valle-Inclán, F. (1999). Accessory Stimulus Effects on Response Selection: Does Arousal Speed Decision Making? Journal of Cognitive Neuroscience, 11(3), 321–329. 10.1162/089892999563427
- 46Hackley, S. A., & Valle-Inclán, F. (2003). Which stages of processing are speeded by a warning signal? Biological Psychology, 64(1–2), 27–45. 10.1016/S0301-0511(03)00101-7
- 47Han, T., & Proctor, R. W. (2022). Effects of a neutral warning signal on spatial two-choice reactions. Quarterly Journal of Experimental Psychology, 75(4), 754–764. 10.1177/17470218211037604
- 48Hancock, P. A. (2017). On the Nature of Vigilance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(1), 35–43. 10.1177/0018720816655240
- 49Harvey, N. (1980). Non-informative effects of stimuli functioning as cues. Quarterly Journal of Experimental Psychology, 32(3), 413–425. 10.1080/14640748008401835
- 50Haupt, M., Jödecke, S., Srowig, A., Napiórkowski, N., Preul, C., Witte, O. W., & Finke, K. (2021). Phasic alerting increases visual processing speed in amnestic mild cognitive impairment. Neurobiology of Aging, 102, 23–31. 10.1016/j.neurobiolaging.2021.01.031
- 51Haupt, M., Ruiz-Rizzo, A. L., Sorg, C., & Finke, K. (2019). Phasic alerting effects on visual processing speed are associated with intrinsic functional connectivity in the cingulo-opercular network. NeuroImage, 196, 216–226. 10.1016/j.neuroimage.2019.04.019
- 52Herzog, M. H., Drissi-Daoudi, L., & Doerig, A. (2020). All in Good Time: Long-Lasting Postdictive Effects Reveal Discrete Perception. Trends in Cognitive Sciences, 24(10), 826–837. 10.1016/j.tics.2020.07.001
- 53Hogendoorn, H. (2022). Perception in real-time: Predicting the present, reconstructing the past. Trends in Cognitive Sciences, 26(2), 128–141. 10.1016/j.tics.2021.11.003
- 54Horstmann, G. (2015). The surprise-attention link: A review: The surprise-attention link. Annals of the New York Academy of Sciences, 1339(1), 106–115. 10.1111/nyas.12679
- 55Jankovic, N., Di Lollo, V., & Spalek, T. M. (2022). Alerting effects occur in simple—But not in compound—Visual search tasks. Journal of Experimental Psychology: Human Perception and Performance, 48(8), 901–912. 10.1037/xhp0001011
- 56Jepma, M., Wagenmakers, E.-J., Band, G. P. H., & Nieuwenhuis, S. (2009). The Effects of Accessory Stimuli on Information Processing: Evidence from Electrophysiology and a Diffusion Model Analysis. Journal of Cognitive Neuroscience, 21(5), 847–864. 10.1162/jocn.2009.21063
- 57Kahan, T. A., & Zhang, H. (2019). Ready to be distracted: Further evidence that the alerting-congruency interaction requires stimulus-response directional associations. Visual Cognition, 27(9–10), 760–767. 10.1080/13506285.2019.1680586
- 58Karpouzian-Rogers, T., Heindel, W. C., Ott, B. R., Tremont, G., & Festa, E. K. (2020). Phasic alerting enhances spatial orienting in healthy aging but not in mild cognitive impairment. Neuropsychology, 34(2), 144–154. 10.1037/neu0000593
- 59Keuss, P. J. G., van der Zee, F., & van den Bree, M. B. M. (1990). Auditory accessory effects on visual processing. Acta Psychologica, 75(1), 41–54. 10.1016/0001-6918(90)90065-N
- 60Krause, A., & Poth, C. H. (2023). Maintaining eye fixation relieves pressure of cognitive action control. iScience 26, 107520. 10.1016/j.isci.2023.107520
- 61Kusnir, F., Chica, A. B., Mitsumasu, M. A., & Bartolomeo, P. (2011). Phasic auditory alerting improves visual conscious perception. Consciousness and Cognition, 20(4), 1201–1210. 10.1016/j.concog.2011.01.012
- 62Lawrence, M. A., & Klein, R. M. (2013). Isolating exogenous and endogenous modes of temporal attention. Journal of Experimental Psychology: General, 142(2), 560–572. 10.1037/a0029023
- 63Levison, M., & Restle, F. (1968). Invalid results from the method of constant stimuli. Perception & Psychophysics, 4(2), 121–122. 10.3758/BF03209522
- 64Li, Q., Liu, P., Huang, S., & Huang, X. (2018). The effect of phasic alertness on temporal precision. Attention, Perception, & Psychophysics, 80(1), 262–274. 10.3758/s13414-017-1418-2
- 65Lin, Z., & Lu, Z.-L. (2016). Automaticity of phasic alertness: Evidence for a three-component model of visual cueing. Attention, Perception, & Psychophysics, 78, 1948–1967. 10.3758/s13414-016-1124-5
- 66Lippert, M., Logothetis, N. K., & Kayser, C. (2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173, 102–109. 10.1016/j.brainres.2007.07.050
- 67Lu, S., Wang, W., & Cai, Y. (2014). Temporal expectancy modulates phasic alerting in both detection and discrimination tasks. Psychonomic Bulletin & Review, 22(1), 235–241. 10.3758/s13423-014-0664-8
- 68Luce, R. D. (1991). Response Times. Oxford University Press. 10.1093/acprof:oso/9780195070019.001.0001
- 69Luna, F. G., Marino, J., Roca, J., & Lupiáñez, J. (2018). Executive and arousal vigilance decrement in the context of the attentional networks: The ANTI-Vea task. Journal of Neuroscience methods, 306, 77–87. 10.1016/j.jneumeth.2018.05.011
- 70MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24(5), 637–651. 10.1037/a0019803
- 71Martella, D., Manzanares, S., Campoy, G., Roca, J., Antúnez, C., & Fuentes, L. J. (2014). Phasic and tonic alerting in mild cognitive impairment: A preliminary study. Experimental Gerontology, 49, 35–39. 10.1016/j.exger.2013.11.001
- 72Mathôt, S. (2018). Pupillometry: Psychology, physiology, and function. Journal of Cognition, 1(1). 10.5334/joc.18
- 73Matthias, E., Bublak, P., Müller, H. J., Schneider, W. X., Krummenacher, J., & Finke, K. (2010). The influence of alertness on spatial and nonspatial components of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 38–56. 10.1037/a0017602
- 74McBurney-Lin, J., Lu, J., Zuo, Y., & Yang, H. (2019). Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neuroscience & Biobehavioral Reviews, 105, 190–199. 10.1016/j.neubiorev.2019.06.009
- 75McConnell, M. M., & Shore, D. I. (2011). Mixing measures: Testing an assumption of the attention network test. Attention, Perception, & Psychophysics, 73(4), 1096–1107. 10.3758/s13414-010-0085-3
- 76McCormick, C. R., Redden, R. S., Hurst, A. J., & Klein, R. M. (2019). On the selection of endogenous and exogenous signals. Royal Society Open Science, 6(11), 190134. 10.1098/rsos.190134
- 77Meiran, N., & Chorev, Z. (2005). Phasic Alertness and the Residual Task-Switching Cost. Experimental Psychology, 52(2), 109–124. 10.1027/1618-3169.52.2.109
- 78Meyer, W.-U., Niepel, M., Rudolph, U., & Schützwohl, A. (1991). An experimental analysis of surprise. Cognition & Emotion, 5(4), 295–311. 10.1080/02699939108411042
- 79Mulder, M. J., & van Maanen, L. (2013). Are accuracy and reaction time affected via different processes? PLoS One, 8(11),
e80222 . 10.1371/journal.pone.0080222 - 80Näätänen, R. (1971). Non-aging fore-periods and simple reaction time. Acta Psychologica, 35(4), 316–327. 10.1016/0001-6918(71)90040-0
- 81Näätänen, R., Muranen, V., & Merisalo, A. (1974). Timing of expectancy peak in simple reaction time situation. Acta Psychologica, 38(6), 461–470. 10.1016/0001-6918(74)90006-7
- 82Niepel, M., Rudolph, U., Schützwohl, A., & Meyer, W.-U. (1994). Temporal characteristics of the surprise reaction induced by schema-discrepant visual and auditory events. Cognition & Emotion, 8(5), 433–452. 10.1080/02699939408408951
- 83Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus—Norepinephrine system. Psychological Bulletin, 131(4), 510–532. 10.1037/0033-2909.131.4.510
- 84Nieuwenhuis, S., De Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response: P3 and orienting response. Psychophysiology, 48(2), 162–175. 10.1111/j.1469-8986.2010.01057.x
- 85Nobre, A., Correa, A., & Coull, J. (2007). The hazards of time. Current Opinion in Neurobiology, 17(4), 465–470. 10.1016/j.conb.2007.07.006
- 86Norman, D. A., & Shallice, T. (1986).
Attention to Action: Willed and Automatic Control of Behavior . In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Hrsg.), Consciousness and Self-Regulation (S. 1–18). Springer US. 10.1007/978-1-4757-0629-1_1 - 87Okazawa, G., Sha, L., Purcell, B. A., & Kiani, R. (2018). Psychophysical reverse correlation reflects both sensory and decision-making processes. Nature Communications, 9(1), 3479. 10.1038/s41467-018-05797-y
- 88Oken, B. S., Salinsky, M. C., & Elsas, S. M. (2006). Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clinical Neurophysiology, 117(9), 1885–1901. 10.1016/j.clinph.2006.01.017
- 89Pashler, H. E. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244. 10.1037//0033-2909.116.2.220
- 90Petersen, A., Petersen, A. H., Bundesen, C., Vangkilde, S., & Habekost, T. (2017). The effect of phasic auditory alerting on visual perception. Cognition, 165, 73–81. 10.1016/j.cognition.2017.04.004
- 91Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73–89. 10.1146/annurev-neuro-062111-150525
- 92Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., Valentino, R., Berridge, C., Chandler, D. J., Waterhouse, B., & Sara, S. J. (2020). Locus coeruleus: A new look at the blue spot. Nature Reviews Neuroscience, 21(11), 644–659. 10.1038/s41583-020-0360-9
- 93Posner, M. I. (1978). Chronometric explorations of mind. Lawrence Erlbaum.
- 94Posner, M. I. (2008). Measuring Alertness. Annals of the New York Academy of Sciences, 1129(1), 193–199. 10.1196/annals.1417.011
- 95Posner, M. I., & Boies, S. J. (1971). Components of attention. Psychological Review, 78(5), 391–408. 10.1037/h0031333
- 96Posner, M. I., Klein, R., Summers, J., & Buggie, S. (1973). On the selection of signals. Memory & Cognition, 1(1), 2–12. 10.3758/BF03198062
- 97Posner, M. I., & Petersen, S. E. (1990). The Attention System of the Human Brain. Annual Review of Neuroscience, 13(1), 25–42. 10.1146/annurev.ne.13.030190.000325
- 98Poth, C. H. (2020). Phasic alertness reverses the beneficial effects of accessory stimuli on choice reaction. Attention, Perception, & Psychophysics, 82(3), 1196–1204. 10.3758/s13414-019-01825-1
- 99Poth, C. H. (2021). Urgency forces stimulus-driven action by overcoming cognitive control. ELife, 10,
e73682 . 10.7554/eLife.73682 - 100Poth, C. H., & Dietze, N. (in prep.). Phasic alertness requires top-down target expectation.
- 101Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9. 10.3389/fnsys.2015.00176
- 102Poth, C. H., Petersen, A., Bundesen, C., & Schneider, W. X. (2014). Effects of monitoring for visual events on distinct components of attention. Frontiers in Psychology, 5. 10.3389/fpsyg.2014.00930
- 103Poth, C. H., & Schneider, W. X. (2016). Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report. Frontiers in Psychology, 7. 10.3389/fpsyg.2016.01440
- 104Poth, C. H., & Schneider, W. X. (2018). Attentional competition across saccadic eye movements. Acta Psychologica, 190, 27–37. 10.1016/j.actpsy.2018.06.011
- 105Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in cognitive sciences, 20(4), 260–281. 10.1016/j.tics.2016.01.007
- 106Rausch, S. M., Gramling, S. E., & Auerbach, S. M. (2006). Effects of a single session of large-group meditation and progressive muscle relaxation training on stress reduction, reactivity, and recovery. International Journal of Stress Management, 13(3), 273. 10.1037/1072-5245.13.3.273
- 107Recanzone, G. H. (2009). Interactions of auditory and visual stimuli in space and time. Hearing Research, 258(1–2), 89–99. 10.1016/j.heares.2009.04.009
- 108Rolke, B. (2008). Temporal preparation facilitates perceptual identification of letters. Perception & Psychophysics, 70(7), 1305–1313. 10.3758/PP.70.7.1305
- 109Salinas, E., Steinberg, B. R., Sussman, L. A., Fry, S. M., Hauser, C. K., Anderson, D. D., & Stanford, T. R. (2019). Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. ELife, 8,
e46359 . 10.7554/eLife.46359 - 110Sanders, A. F. (1980).
20 Stage Analysis of Reaction Processes . In Advances in Psychology (Bd. 1, S. 331–354). Elsevier. 10.1016/S0166-4115(08)61955-X - 111Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211–223. 10.1038/nrn2573
- 112Schneider, D. W. (2018). Alertness and cognitive control: Testing the early onset hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 44(5), 756–766. 10.1037/xhp0000497
- 113Schneider, D. W. (2019a). Alertness and cognitive control: Is there a spatial attention constraint? Attention, Perception, & Psychophysics, 81(1), 119–136.
- 114Schneider, D. W. (2019b). Alertness and cognitive control: Testing the spatial grouping hypothesis. Attention, Perception, & Psychophysics, 81(6), 1913–1925. 10.3758/s13414-019-01764-x
- 115Schneider, D. W. (2020). Alertness and cognitive control: Interactions in the spatial Stroop task. Attention, Perception, & Psychophysics, 82(5), 2257–2270. 10.3758/s13414-020-01993-5
- 116Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130060. 10.1098/rstb.2013.0060
- 117See, J. E., Howe, S. R., Warm, J. S., & Dember, W. N. (1995). Meta-analysis of the sensitivity decrement in vigilance. Psychological Bulletin, 117(2), 230–249. 10.1037/0033-2909.117.2.230
- 118Seibold, V. C. (2018). Do alerting signals increase the size of the attentional focus?. Attention, Perception, & Psychophysics, 80, 402–425. 10.3758/s13414-017-1451-1
- 119Steghaus, S., & Poth, C. H. (2022). Assessing momentary relaxation using the Relaxation State Questionnaire (RSQ). Scientific Reports, 12(1), 16341. 10.1038/s41598-022-20524-w
- 120Steghaus, S., & Poth, C. H. (2024). Feeling tired versus feeling relaxed: Two faces of low physiological arousal. Plos ONE, 19(9),
e0310034 . 10.1371/journal.pone.0310034 - 121Sturm, W., & Willmes, K. (2001). On the Functional Neuroanatomy of Intrinsic and Phasic Alertness. NeuroImage, 14(1), S76–S84. 10.1006/nimg.2001.0839
- 122Tona, K.-D., Murphy, Peter. R., Brown, S. B. R. E., & Nieuwenhuis, S. (2016). The accessory stimulus effect is mediated by phasic arousal: A pupillometry study: Phasic arousal and the AS effect. Psychophysiology, 53(7), 1108–1113. 10.1111/psyp.12653
- 123Torre, V., Ashmore, J., Lamb, T., & Menini, A. (1995). Transduction and adaptation in sensory receptor cells. The Journal of Neuroscience, 15(12), 7757–7768. 10.1523/JNEUROSCI.15-12-07757.1995
- 124Treisman, A. M., & Gelade, G. (1980). A Feature-Integration Theory of Attention. Cognitive Psychology, 12(1), 97–136. 10.1016/0010-0285(80)90005-5
- 125Unsworth, N., & Robison, M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601–615. 10.3758/s13415-016-0417-4
- 126van Ede, F., de Lange, F. P., & Maris, E. (2012). Attentional cues affect accuracy and reaction time via different cognitive and neural processes. Journal of Neuroscience, 32(30), 10408–10412. 10.1523/JNEUROSCI.1337-12.2012
- 127Vangkilde, S., Coull, J. T., & Bundesen, C. (2012). Great expectations: Temporal expectation modulates perceptual processing speed. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1183–1191. 10.1037/a0026343
- 128Vangkilde, S., Petersen, A., & Bundesen, C. (2013). Temporal expectancy in the context of a theory of visual attention. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628). 10.1098/rstb.2013.0054
- 129Weinbach, N., & Henik, A. (2012a). Temporal orienting and alerting – the same or different? Frontiers in Psychology, 3(26). 10.3389/fpsyg.2012.00236
- 130Weinbach, N., & Henik, A. (2012b). The relationship between alertness and executive control. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1530–1540. 10.1037/a0027875
- 131Weinbach, N., & Henik, A. (2013). The interaction between alerting and executive control: Dissociating phasic arousal and temporal expectancy. Attention, Perception, & Psychophysics, 75(7), 1374–1381. 10.3758/s13414-013-0501-6
- 132Wiegand, I., Petersen, A., Finke, K., Bundesen, C., Lansner, J., & Habekost, T. (2017). Behavioral and brain measures of phasic alerting effects on visual attention. Frontiers in Human Neuroscience, 11(176). 10.3389/fnhum.2017.00176
- 133Wolfe, J. M. (1994). Guided Search 2.0 A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. 10.3758/BF03200774
- 134Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092. 10.3758/s13423-020-01859-9
- 135Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482. 10.1002/cne.920180503
- 136Zhou, J., Benson, N. C., Kay, K. N., & Winawer, J. (2018). Compressive Temporal Summation in Human Visual Cortex. The Journal of Neuroscience, 38(3), 691–709. 10.1523/JNEUROSCI.1724-17.2017
