Have a personal or library account? Click to login
It’s Hard to Prepare for Task Novelty: Cueing the Novelty of Upcoming Tasks Does Not Facilitate Task Performance Cover

It’s Hard to Prepare for Task Novelty: Cueing the Novelty of Upcoming Tasks Does Not Facilitate Task Performance

Open Access
|Jan 2025

References

  1. 1Abrahamse, E., Braem, S., De Houwer, J., & Liefooghe, B.. (2022). Tenacious instructions: How to dismantle newly instructed task rules? Journal of Experimental Psychology: General. 10.1037/xge0001233
  2. 2Aufschnaiter, S., Kiesel, A., & Thomaschke, R.. (2021). Time-based transition expectancy in task switching: do we need to know the task to switch to? Journal of Cognition, 4(1). 10.5334/joc.145
  3. 3Badre, D.. (2012). Opening the gate to working memory. Proceedings of the national academy of sciences, 109(49), 1987819879. 10.1073/pnas.1216902109
  4. 4Botvinick, M. M., Niv, Y., & Barto, A. G.. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition, 113(3), 262280. 10.1016/j.cognition.2008.08.011
  5. 5Bourguignon, N. J., Braem, S., Hartstra, E., De Houwer, J., & Brass, M.. (2018). Encoding of novel verbal instructions for prospective action in the lateral prefrontal cortex: evidence from univariate and multivariate functional magnetic resonance imaging analysis. Journal of cognitive neuroscience, 30(8), 11701184. 10.1162/jocn_a_01270
  6. 6Braem, S.. (2017). Conditioning task switching behavior. Cognition, 166, 272276. 10.1016/j.cognition.2017.05.037
  7. 7Braem, S., Chai, M., Held, L. K., & Xu, S.. (2024). One cannot simply ‘be flexible’: regulating control parameters requires learning. Current Opinion in Behavioral Sciences, 55, 101347. 10.1016/j.cobeha.2023.101347
  8. 8Brass, M., Liefooghe, B., Braem, S., & De Houwer, J.. (2017). Following new task instructions: Evidence for a dissociation between knowing and doing. Neuroscience & Biobehavioral Reviews, 81, 1628. 10.1016/j.neubiorev.2017.02.012
  9. 9Braver, T. S., & Cohen, J. D.. (2000). On the control of control: The role of dopamine in regulating prefrontal function and working memory. Control of cognitive processes: Attention and performance XVIII, 2000.
  10. 10Brysbaert, M., & Stevens, M.. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of cognition, 1(1). 10.5334/joc.10
  11. 11Bugg, J. M., Diede, N. T., Cohen-Shikora, E. R., & Selmeczy, D.. (2015). Expectations and experience: Dissociable bases for cognitive control? Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1349. 10.1037/xlm0000106
  12. 12Bugg, J. M., & Smallwood, A.. (2016). The next trial will be conflicting! Effects of explicit congruency pre-cues on cognitive control. Psychological research, 80, 1633. 10.1007/s00426-014-0638-5
  13. 13Chatham, C. H., & Badre, D.. (2015). Multiple gates on working memory. Current opinion in behavioral sciences, 1, 2331. 10.1016/j.cobeha.2014.08.001
  14. 14Clifford, S., & Jerit, J.. (2014). Is there a cost to convenience? An experimental comparison of data quality in laboratory and online studies. Journal of Experimental Political Science, 1(2), 120131. 10.1017/xps.2014.5
  15. 15Cohn, L. D., & Becker, B. J.. (2003). How meta-analysis increases statistical power. Psychological methods, 8(3), 243. 10.1037/1082-989X.8.3.243
  16. 16Cole, M. W., Bagic, A., Kass, R., & Schneider, W.. (2010). Prefrontal dynamics underlying rapid instructed task learning reverse with practice. Journal of Neuroscience, 30(42), 1424514254. 10.1523/JNEUROSCI.1662-10.2010
  17. 17Cole, M. W., Braver, T. S., & Meiran, N.. (2017). The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. Neuroscience & Biobehavioral Reviews, 81, 415. 10.1016/j.neubiorev.2017.02.009
  18. 18Cole, M. W., Laurent, P., & Stocco, A.. (2013). Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 13, 122. 10.3758/s13415-012-0125-7
  19. 19Cole, M. W., Patrick, L. M., Meiran, N., & Braver, T. S.. (2018). A role for proactive control in rapid instructed task learning. Acta psychologica, 184, 2030. 10.1016/j.actpsy.2017.06.004
  20. 20D’Ardenne, K., Eshel, N., Luka, J., Lenartowicz, A., Nystrom, L. E., & Cohen, J. D.. (2012). Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of Sciences, 109(49), 1990019909. 10.1073/pnas.1116727109
  21. 21Dienes, Z.. (2024). Use one system for all results to avoid contradiction: Advice for using significance tests, equivalence tests, and Bayes factors. Journal of experimental psychology: human perception and performance, 50(5), 531. 10.1037/xhp0001202
  22. 22Dreisbach, G., & Fröber, K.. (2019). On how to be flexible (or not): Modulation of the stability-flexibility balance. Current Directions in Psychological Science, 28(1), 39. 10.1177/0963721418800030
  23. 23Dreisbach, G., Haider, H., & Kluwe, R. H.. (2002). Preparatory processes in the task-switching paradigm: evidence from the use of probability cues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 468. 10.1037//0278-7393.28.3.468
  24. 24Goschke, T., & Bolte, A.. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403423. 10.1016/j.neuropsychologia.2014.07.015
  25. 25Hartstra, E., Kühn, S., Verguts, T., & Brass, M.. (2011). The implementation of verbal instructions: an fMRI study. Human brain mapping, 32(11), 18111824. 10.1002/hbm.21152
  26. 26Hazy, T. E., Frank, M. J., & O’reilly, R. C.. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 16011613. 10.1098/rstb.2007.2055
  27. 27Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X.. (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological methods, 24(5), 539. 10.1037/met0000201
  28. 28Hommel, B.. (2004). Event files: Feature binding in and across perception and action. Trends in cognitive sciences, 8(11), 494500. 10.1016/j.tics.2004.08.007
  29. 29Jeffreys, H.. (1998). The theory of probability. OuP Oxford. 10.1093/oso/9780198503682.001.0001
  30. 30Jiménez, L., Méndez, C., Abrahamse, E., & Braem, S.. (2021). It is harder than you think: On the boundary conditions of exploiting congruency cues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(10), 1686. 10.1037/xlm0000844
  31. 31Karayanidis, F., Jamadar, S., Ruge, H., Phillips, N., Heathcote, A., & Forstmann, B. U.. (2010). Advance preparation in task-switching: converging evidence from behavioral, brain activation, and model-based approaches. Frontiers in Psychology, 1, 25. 10.3389/fpsyg.2010.00025
  32. 32Karayanidis, F., Mansfield, E. L., Galloway, K. L., Smith, J. L., Provost, A., & Heathcote, A.. (2009). Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cognitive, Affective, & Behavioral Neuroscience, 9(2), 202215. 10.3758/CABN.9.2.202
  33. 33Kleinsorge, T., & Heuer, H.. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62, 300312. 10.1007/s004260050060
  34. 34Kruijne, W., Bohte, S. M., Roelfsema, P. R., & Olivers, C. N.. (2021). Flexible working memory through selective gating and attentional tagging. Neural Computation, 33(1), 140. 10.1162/neco_a_01339
  35. 35Kukkonen, N., Braem, S., Allaert, J., Eayrs, J. O., Prutean, N., Steendam, S. T., Boehler, C. N., Wiersema, J. R., Notebaert, W., & Krebs, R. M.. (2025). The Cost of Regulating Effort: Reward and Difficulty Cues With Longer Prediction Horizons Have a Stronger Impact on Performance. Journal of Cognition, 8(1), 9, 122. 10.5334/joc.415
  36. 36Lawrence, M. A.. (2016). ez: Easy Analysis and Visualization of Factorial Experiments. R package version 4.4–0.
  37. 37Liu, C., & Yeung, N.. (2020). Dissociating expectancy-based and experience-based control in task switching. Journal of Experimental Psychology: Human Perception and Performance, 46(2), 131. 10.1037/xhp0000704
  38. 38Mill, R. D., & Cole, M. W.. (2023). Neural representation dynamics reveal computational principles of cognitive task learning. bioRxiv, 202306. 10.1101/2023.06.27.546751
  39. 39Mohr, H., Wolfensteller, U., Betzel, R. F., Mišić, B., Sporns, O., Richiardi, J., & Ruge, H.. (2016). Integration and segregation of large-scale brain networks during short-term task automatization. Nature communications, 7(1), 13217. 10.1038/ncomms13217
  40. 40Monsell, S.. (2003). Task switching. Trends in cognitive sciences, 7(3), 134140. 10.1016/S1364-6613(03)00028-7
  41. 41Monsell, S., Yeung, N., & Azuma, R.. (2000). Reconfiguration of task-set: Is it easier to switch to the weaker task? Psychological research, 63, 250264. 10.1007/s004269900005
  42. 42Morey, R. D., Rouder, J. N., Jamil, T., & Morey, M. R. D.. (2015). Package ‘bayesfactor’. https://cran.r-project.org/web/packages/BayesFactor/index.html
  43. 43Nicholson, R., Karayanidis, F., Davies, A., & Michie, P. T.. (2006). Components of task-set reconfiguration: Differential effects of ‘switch-to’ and ‘switch-away’cues. Brain research, 1121(1), 160176. 10.1016/j.brainres.2006.08.101
  44. 44Oberauer, K.. (2009). Design for a working memory. Psychology of learning and motivation, 51, 45100. 10.1016/S0079-7421(09)51002-X
  45. 45Oberauer, K., Souza, A. S., Druey, M. D., & Gade, M.. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66(2), 157211. 10.1016/j.cogpsych.2012.11.001
  46. 46O’Reilly, R. C., & Frank, M. J.. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural computation, 18(2), 283328. 10.1162/089976606775093909
  47. 47R Core Team. (2017). R: A language and environment for statistical computing.
  48. 48Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Reilly, R. C.. (2005). Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences, 102(20), 73387343. 10.1073/pnas.0502455102
  49. 49Ruge, H., & Wolfensteller, U.. (2010). Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cerebral Cortex, 20(7), 16561667. 10.1093/cercor/bhp228
  50. 50Schwarzer, G., Carpenter, J. R., & Rücker, G.. (2015). Meta-analysis with R (Vol. 4784). Cham: springer. 10.1007/978-3-319-21416-0
  51. 51Shenhav, A., Botvinick, M. M., & Cohen, J. D.. (2013). The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217240. 10.1016/j.neuron.2013.07.007
  52. 52Shiffrin, R. M., & Schneider, W.. (1984). Automatic and controlled processing revisited. 10.1037//0033-295X.91.2.269
  53. 53Yeung, N., & Monsell, S.. (2003). Switching between tasks of unequal familiarity: the role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human perception and performance, 29(2), 455. 10.1037/0096-1523.29.2.455
DOI: https://doi.org/10.5334/joc.423 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jun 19, 2024
Accepted on: Dec 30, 2024
Published on: Jan 15, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Mengqiao Chai, Ana F. Palenciano, Ravi Mill, Michael W. Cole, Senne Braem, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.