Have a personal or library account? Click to login
Verbal Encoding Strategies in Visuo-Spatial Working Memory Cover

Verbal Encoding Strategies in Visuo-Spatial Working Memory

Open Access
|Jan 2025

References

  1. 1A-Izzeddin, E. J., Mattingley, J. B., & Harrison, W. J. (2023). The influence of natural image statistics on upright orientation judgements. 10.1016/j.cognition.2023.105631
  2. 2Appelle. (1972). Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals—PubMed. 10.1037/h0033117
  3. 3Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119126. 10.1016/s1364-6613(00)01593-x
  4. 4Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189208. 10.1016/S0021-9924(03)00019-4
  5. 5Baddeley, A., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation – Advances in Research and Theory, 8(C), 4789. 10.1016/S0079-7421(08)60452-1
  6. 6Bae, G.-Y. (2020). Neural evidence for categorical biases in working memory for location and orientation. 10.1101/2020.12.15.422978
  7. 7Bae, G.-Y., Olkkonen, M., Allred, S. R., & Flombaum, J. I. (2015). Why some colors appear more memorable than others: A model combining categories and particulars in color working memory. Journal of Experimental Psychology: General, 144(4), 744763. 10.1037/xge0000076
  8. 8Balikou, P., Gourtzelidis, P., Mantas, A., Moutoussis, K., Evdokimidis, I., & Smyrnis, N. (2015). Independent sources of anisotropy in visual orientation representation: A visual and a cognitive oblique effect. Experimental Brain Research, 233(11), 30973108. 10.1007/s00221-015-4379-5
  9. 9Baud-Bovy, G., & Gentaz, E. (2012). The perception and representation of orientations: A study in the haptic modality. Acta Psychologica, 141(1), 2430. 10.1016/j.actpsy.2012.06.002
  10. 10Brandimonte, M., Schooler, J., & Gabbino, P. (1997). Attenuating Verbal Overshadowing Through Color Retrieval Cues. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23, 915931. 10.1037/0278-7393.23.4.915
  11. 11Brown, L. A., Forbes, D., & McConnell, J. (2006). Short Article: Limiting the use of Verbal Coding in the Visual Patterns Test. Quarterly Journal of Experimental Psychology, 59(7), 11691176. 10.1080/17470210600665954
  12. 12Brown, L. A., & Wesley, R. W. (2013). Visual working memory is enhanced by mixed strategy use and semantic coding. Journal of Cognitive Psychology, 25(3), 328338. 10.1080/20445911.2013.773004
  13. 13Buchsbaum, B. R., & D’Esposito, M. (2019). A sensorimotor view of verbal working memory. Cortex, 112, 134148. 10.1016/j.cortex.2018.11.010
  14. 14Buchsbaum, B. R., & Esposito, M. D. (2008). The Search for the Phonological Store: From Loop to Convolution. Journal of cognitive neuroscience, 20(5), 762778. 10.1162/jocn.2008.20501
  15. 15Chen, Z., & Cowan, N. (2009). Core verbal working-memory capacity: The limit in words retained without covert articulation. Quarterly Journal of Experimental Psychology (2006), 62(7), 1420. 10.1080/17470210802453977
  16. 16Chopurian, V., Weber, S., & Christophel, T. (2024). Distinct functional roles of distributed cortical representations for working memory storage. 10.1101/2024.02.02.578618
  17. 17Christophel, T. B., Hebart, M. N., & Haynes, J.-D. (2012). Decoding the Contents of Visual Short-Term Memory from Human Visual and Parietal Cortex. Journal of Neuroscience, 32(38), 1298312989. 10.1523/JNEUROSCI.0184-12.2012
  18. 18Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J. D. (2017). The Distributed Nature of Working Memory. Trends in Cognitive Sciences, 21(2), 111124. 10.1016/j.tics.2016.12.007
  19. 19Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K., & Alvarez, G. A. (2014). Processing multiple visual objects is limited by overlap in neural channels. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 89558960. 10.1073/PNAS.1317860111
  20. 20Coppola, D. M., Purves, H. R., McCoy, A. N., & Purves, D. (1998). The distribution of oriented contours in the real world. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 40024006. 10.1073/PNAS.95.7.4002
  21. 21Deniz, F., Nunez-Elizalde, A. O., Huth, A. G., & Gallant, J. L. (2019). The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality. Journal of Neuroscience, 39(39), 77227736. 10.1523/JNEUROSCI.0675-19.2019
  22. 22Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal working memory: An fMRI meta-analysis. Frontiers in Human Neuroscience, 13, 180. 10.3389/fnhum.2019.00180
  23. 23Emrich, S. M., Lockhart, H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 14541465. 10.1037/xhp0000398
  24. 24Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive Architecture of Working Memory. Neuron, 88(1), 3346. 10.1016/j.neuron.2015.09.020
  25. 25Essock, E. A. (1980). The Oblique Effect of Stimulus Identification Considered with Respect to Two Classes of Oblique Effects. Perception, 9(1), 3746. 10.1068/P090037
  26. 26Essock, E. A., Krebs, W. K., & Prather, J. R. (1992). An anisotropy of human tactile sensitivity and its relation to the visual oblique effect. Experimental Brain Research, 91(3), 520524. 10.1007/BF00227848
  27. 27Ester, E. F., Sprague, T. C., & Serences, J. T. (2015). Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory. Neuron, 87(4), 893905. 10.1016/j.neuron.2015.07.013
  28. 28Ester, E. F., Sprague, T. C., & Serences, J. T. (2020). Categorical Biases in Human Occipitoparietal Cortex. Journal of Neuroscience, 40(4), 917931. 10.1523/JNEUROSCI.2700-19.2019
  29. 29Fang, C., Cai, X., & Lu, H. D. (2022). Orientation anisotropies in macaque visual areas. Proceedings of the National Academy of Sciences of the United States of America, 119(15), e2113407119. 10.1073/pnas.2113407119
  30. 30Forsberg, A., Johnson, W., & Logie, R. H. (2020). Cognitive aging and verbal labeling in continuous visual memory. Memory & Cognition, 48(7), 11961213. 10.3758/s13421-020-01043-3
  31. 31Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). A Comparison of Primate Prefrontal and Inferior Temporal Cortices during Visual Categorization. The Journal of Neuroscience, 23(12), 52355246. 10.1523/JNEUROSCI.23-12-05235.2003
  32. 32Fuster, J. M. (1997). Network memory. Trends in Neurosciences, 20(10), 451459. 10.1016/S0166-2236(97)01128-4
  33. 33Gauthier, I., James, T. W., Curby, K. M., & Tarr, M. J. (2003). The influence of conceptual knowledge on visual discrimination. Cognitive Neuropsychology, 20(3–6), 507523. 10.1080/02643290244000275
  34. 34Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 14(7), 926. 10.1038/NN.2831
  35. 35Glanzer, M., & Clark, W. H. (1964). The Verbal-Loop Hypothesis: Conventional Figures. The American Journal of Psychology, 77, 621626. 10.2307/1420773
  36. 36Gonthier, C. (2021). Charting the diversity of strategic processes in visuospatial short-term memory. Perspectives on Psychological Science, 16(2), 294318. 10.1177/1745691620950697
  37. 37Grill-Spector, K., & Kanwisher, N. (2005). Visual Recognition As Soon as You Know It Is There, You Know What It Is. Psychological science, 16(2), 152160. 10.1111/j.0956-7976.2005.00796.x
  38. 38Hansen, B. C., & Essock, E. A. (2004). A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. Journal of Vision, 4(12), 10441060. 10.1167/4.12.5
  39. 39Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature 2009 458:7238, 458(7238), 632635. 10.1038/nature07832
  40. 40Hasantash, M., & Afraz, A. (2020). Richer color vocabulary is associated with better color memory but not color perception. Proceedings of the National Academy of Sciences of the United States of America, 117(49), 3104631052. 10.1073/PNAS.2001946117
  41. 41Hebart, M. N., Contier, O., Teichmann, L., Rockter, A. H., Zheng, C. Y., Kidder, A., Corriveau, A., Vaziri-Pashkam, M., & Baker, C. I. (2023). THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior. eLife, 12, e82580. 10.7554/eLife.82580
  42. 42Huttenlocher, J., Hedges, L. V., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. Cognition, 93(2), 7597. 10.1016/j.cognition.2003.10.006
  43. 43Iamshchinina, P., Christophel, T. B., Gayet, S., & Rademaker, R. L. (2021). Essential considerations for exploring visual working memory storage in the human brain. Visual Cognition, 29(7), 425436. 10.1080/13506285.2021.1915902
  44. 44Koenigs, M., Acheson, D. J., Barbey, A. K., Solomon, J., Postle, B. R., & Grafman, J. (2011). Areas of left perisylvian cortex mediate auditory-verbal short-term memory. Neuropsychologia, 49(13), 36123619. 10.1016/J.NEUROPSYCHOLOGIA.2011.09.013
  45. 45Kwak, Y., & Curtis, C. E. (2022). Unveiling the abstract format of mnemonic representations. 10.1016/j.neuron.2022.03.016
  46. 46Lee, S.-H., & Baker, C. I. (2016). Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory. Frontiers in Systems Neuroscience, 10. 10.3389/fnsys.2016.00002
  47. 47Lupyan, G. (2008). From Chair to “Chair”: A Representational Shift Account of Object Labeling Effects on Memory. 10.1037/0096-3445.137.2.348.supp
  48. 48Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is not just for talking: Redundant labels facilitate learning of novel categories. Psychological Science, 18(12), 10771083. 10.1111/J.1467-9280.2007.02028.X
  49. 49Maier, M., & Abdel Rahman, R. (2018). Native Language Promotes Access to Visual Consciousness. Psychological Science, 29(11), 17571772. 10.1177/0956797618782181
  50. 50Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K. M., Malave, V. L., Mason, R. A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 11911195. 10.1126/SCIENCE.1152876
  51. 51Orme, E., Brown, L. A., & Riby, L. M. (2017). Retrieval and Monitoring Processes during Visual Working Memory: An ERP Study of the Benefit of Visual Semantics. Frontiers in Psychology, 8. 10.3389/fpsyg.2017.01080
  52. 52Overkott, C., & Souza, A. S. (2022). Verbal Descriptions Improve Visual Working Memory but Have Limited Impact on Visual Long-Term Memory, 151(2), 321347. 10.1037/xge0001084
  53. 53Overkott, C., & Souza, A. S. (2023). The Fate of Labeled and Non-Labeled Visual Features in Working Memory. 10.1037/xhp0001089
  54. 54Overkott, C., Souza, A. S., & Morey, C. C. (2023). The developing impact of verbal labels on visual memories in children. Journal of Experimental Psychology: General, 152(3), 825838. 10.1037/xge0001305
  55. 55Papagno, C., Valentine, T., & Baddeley, A. (1991). Phonological short-term memory and foreign-language vocabulary learning. Journal of Memory and Language, 30(3), 331347. 10.1016/0749-596X(91)90040-Q
  56. 56Pereira Seabra, J., Chopurian, V., Gui, A.-M., Souza, A., & Christophel, T. (2023). Shared neural representations of orientation and location information during working memory. Journal of Vision, 23, 5367. 10.1167/jov.23.9.5367
  57. 57Popham, S. F., Huth, A. G., Bilenko, N. Y., Deniz, F., Gao, J. S., Nunez-Elizalde, A. O., & Gallant, J. L. (2021). Visual and linguistic semantic representations are aligned at the border of human visual cortex. Nature Neuroscience, 24(11), 16281636. 10.1038/S41593-021-00921-6
  58. 58Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 2338. 10.1016/j.neuroscience.2005.06.005
  59. 59Pratte, M. S., Park, Y. E., Rademaker, R. L., & Tong, F. (2017). Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 43(1), 617. 10.1037/xhp0000302
  60. 60R Core Team. (2021). R version 4.1.1: A language and environment for statistical computing. [Computer software]. https://www.R-project.org
  61. 61Roth, M. M., Helmchen, F., & Kampa, B. M. (2012). Distinct Functional Properties of Primary and Posteromedial Visual Area of Mouse Neocortex. Journal of Neuroscience, 32(28), 97169726. 10.1523/JNEUROSCI.0110-12.2012
  62. 62RStudio Team. (2020). RStudio: Integrated Development for R [Computer software].
  63. 63Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-Specific Fronto-Parietal Synchronization During Visual Working Memory. Science, 338(6110), 10971100. 10.1126/science.1224000
  64. 64Schooler, J. W., & Engstler-Schooler, T. Y. (1990). Verbal overshadowing of visual memories: Some things are better left unsaid. Cognitive Psychology, 22(1), 3671. 10.1016/0010-0285(90)90003-M
  65. 65Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207214. 10.1111/j.1467-9280.2009.02276.x
  66. 66Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415(6869), 318320. 10.1038/415318a
  67. 67Siuda-Krzywicka, K., Witzel, C., Chabani, E., Taga, M., Coste, C., Cools, N., Ferrieux, S., Cohen, L., Seidel Malkinson, T., & Bartolomeo, P. (2019). Color Categorization Independent of Color Naming. Cell Reports, 28(10), 24712479.e5. 10.1016/J.CELREP.2019.08.003
  68. 68Souza, A. S., Overkott, C., & Matyja, M. (2021). Categorical distinctiveness constrains the labeling benefit in visual working memory. Journal of Memory and Language, 119, 104242. 10.1016/J.JML.2021.104242
  69. 69Souza, A. S., & Skóra, Z. (2017). The interplay of language and visual perception in working memory. Cognition, 166, 277297. 10.1016/j.cognition.2017.05.038
  70. 70Thalmann, M., Souza, A. S., & Oberauer, K. (2019). How does chunking help working memory? Journal of Experimental Psychology: Learning Memory and Cognition, 45(1), 3755. 10.1037/xlm0000578
  71. 71Wang, G., Ding, S., & Yunokuchi, K. (2003). Difference in the representation of cardinal and oblique contours in cat visual cortex. Neuroscience Letters, 338(1), 7781. 10.1016/S0304-3940(02)01355-1
  72. 72Warrington, E. K., & Shallice, T. (1972). Neuropsychological Evidence of Visual Storage in Short-term Memory Tasks. Quarterly Journal of Experimental Psychology, 24(1), 3040. 10.1080/14640747208400265
  73. 73Yan, C., Christophel, T. B., Allefeld, C., & Haynes, J. D. (2021). Decoding verbal working memory representations of Chinese characters from Broca’s area. NeuroImage, 226, 117595. 10.1016/J.NEUROIMAGE.2020.117595
  74. 74Yan, C., Christophel, T. B., Allefeld, C., & Haynes, J. D. (2023). Categorical working memory codes in human visual cortex. NeuroImage, 274(April), 120149. 10.1016/j.neuroimage.2023.120149
  75. 75Yue, Q., Martin, R. C., Cris Hamilton, A., & Rose, N. S. (2019). Non-perceptual Regions in the Left Inferior Parietal Lobe Support Phonological Short-term Memory: Evidence for a Buffer Account? Cerebral Cortex, 29(4), 13981413. 10.1093/cercor/bhy037
  76. 76Zhou, C., Lorist, M. M., & Mathôt, S. (2022). Categorical bias as a crucial parameter in visual working memory: The effect of memory load and retention interval. Cortex, 154, 311321. 10.1016/j.cortex.2022.05.007
DOI: https://doi.org/10.5334/joc.406 | Journal eISSN: 2514-4820
Language: English
Submitted on: Apr 22, 2024
Accepted on: Oct 1, 2024
Published on: Jan 6, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Joana Pereira Seabra, Vivien Chopurian, Alessandra S. Souza, Thomas B. Christophel, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.