References
- Ahmed, S. F., Ellis, A., Ward, K. P., Chaku, N., & Davis-Kean, P. E. (2022). Working memory development from early childhood to adolescence using two nationally representative samples. Developmental Psychology, 58, 1962–1973. DOI: 10.1037/dev0001396
- Anderson, J. R., & Matessa, M. (1997). A production system theory of serial memory. Psychological Review, 104, 728–748. DOI: 10.1037/0033-295X.104.4.728
- Arsalidou, M. (2013). Working memory capacity: The need for process task-analysis. Frontiers in Psychology, 4, 257–258. DOI: 10.3389/fpsyg.2013.00257
- Arsalidou, M., Pascual-Leone, J., Johnson, J., Morris, D., & Taylor, M. J. (2013). A balancing act of the brain: Activations and deactivations driven by cognitive load. Brain and Behavior, 3, 273–285. DOI: 10.1002/brb3.128
- Asp, I. E., Strömer, V. S., & Brady, T. F. (2021). Greater visual working memory capacity for visually matched stimuli when they are perceived as meaningful. Journal of Cognitive Neuroscience, 33, 902–918. DOI: 10.1162/jocn_a_01693
- Atkinson, R. C., & Shiffrin, R. M. (1968).
Human memory: A proposed system and its control processes . In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). New York: Academic Press. DOI: 10.1016/S0079-7421(08)60422-3 - Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628. DOI: 10.1111/j.1467-9280.2007.01949.x
- Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. DOI: 10.1016/S1364-6613(00)01593-X
- Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. DOI: 10.1146/annurev-psych-120710-100422
- Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. Journal of Verbal Learning and Verbal Behavior, 14, 575–589. DOI: 10.1016/S0022-5371(75)80045-4
- Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83–100. DOI: 10.1037/0096-3445.133.1.83
- Barrouillet, P., Corbin, L., Dagry, I., & Camos, V. (2015). An empirical test of the independence between declarative and procedural working memory in Oberauer’s (2009) theory. Psychonomic Bulletin and Review, 22, 1035–1040. DOI: 10.3758/s13423-014-0787-y
- Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118, 175–192. DOI: 10.1037/a0022324
- Bays, P., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9, 1–11. DOI: 10.1167/9.10.7
- Bettencourt, K. C., Michalka, S. W., & Somers, D. C. (2011). Shared filtering processes link attentional and visual short-term memory capacity limits. Journal of Vision, 11, 22. DOI: 10.1167/11.10.22
- Brady, T. F., Konke, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and towards structured representations. Journal of Vision, 11(5): 4. DOI: 10.1167/11.5.4
- Camos, V., Mora, G., & Oberauer, K. (2011). Adaptive choice between articulatory rehearsal and attentional refreshing in verbal working memory. Memory & Cognition, 39, 231–244. DOI: 10.3758/s13421-010-0011-x
- Case, R. (1985). Intellectual development: Birth to adulthood. New York: Academic Press.
- Chow, M., & Conway, A. R. A. (2015). The scope and control of attention: Sources of variance in working memory capacity. Memory & Cognition, 43, 325–339. DOI: 10.3758/s13421-014-0496-9
- Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104, 163–191. DOI: 10.1037/0033-2909.104.2.163
- Cowan, N. (2001a). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. DOI: 10.1017/S0140525X01003922
- Cowan, N. (2001b). Author’s response: Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24, 154–176. DOI: 10.1017/S0140525X0161392X
- Cowan, N. (2005). Working memory capacity. Hove, UK: Psychology Press. DOI: 10.4324/9780203342398
- Cowan, N. (2011). The focus of attention as observed in visual working memory tasks: Making sense of competing claims. Neuropsychologia, 49, 1401–1406. DOI: 10.1016/j.neuropsychologia.2011.01.035
- Cowan, N. (2015). George Miller’s magical number of immediate memory in retrospect: Observations on the faltering progression of science. Psychological Review, 122, 536–541. DOI: 10.1037/a0039035
- Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspectives on Psychological Science, 11, 239–264. DOI: 10.1177/1745691615621279
- Cowan, N. (2019). Short-term memory based on activated long-term memory: A review in response to Norris (2017). Psychological Bulletin, 145, 822–847. DOI: 10.1037/bul0000199
- Cowan, N., Blume, C. L., & Saults, J. S. (2013). Attention to attributes and objects in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 731–747. DOI: 10.1037/a0029687
- Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100. DOI: 10.1016/j.cogpsych.2004.12.001
- Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34, 1754–1768. DOI: 10.3758/BF03195936
- Cowan, N., Morey, C. C., Chen, Z., Gilchrist, A. L., & Saults, J. S. (2008).
Theory and measurement of working memory capacity limits . In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 49, pp. 49–104). Elsevier. DOI: 10.1016/S0079-7421(08)00002-9 - Cowan, N., Rouder, J. N., Blume, C. L., & Saults, J. S. (2012). Models of verbal working memory capacity: What does it take to make them work? Psychological Review, 119, 480–499. DOI: 10.1037/a0027791
- de Ribaupierre, A., Keizer, I., Sancho, A., Spira, A., & Thomas, L. (1990). Etude longitudinale de la capacité d’attention mentale chez l’enfant de 5 à 12 ans. (A longitudinal study of mental attention capacity in 5- to 12-year-old children). Unpublished research report for the FNRS, University of Geneva.
- Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 972–992. DOI: 10.1037/0278-7393.18.5.972
- Engle, R. W., Kane, W., & Tuholski, W. (1999).
Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex . In A. Miyake & P. Shah (Eds.), Models of Working Memory (pp. 102–130). Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139174909.007 - Feller, W. (1968).
An introduction to probability theory and its application , vol. I. New York: Wiley. - Gade, M., Druey, M. D., Souza, A. S., & Oberauer, K. (2014). Interference within and between declarative and procedural representations in working memory. Journal of Memory and Language, 76, 174–194. DOI: 10.1016/j.jml.2014.07.002
- Globerson, T. (1983). Mental capacity and cognitive functioning: Developmental and social class differences. Developmental Psychology, 19, 225–230. DOI: 10.1037//0012-1649.19.2.225
- Guttentag, R. E. (1984). The mental effort requirement of cumulative rehearsal: A developmental study. Journal of Experimental Child Psychology, 37, 92–106. DOI: 10.1016/0022-0965(84)90060-2
- Hardman, K. O., Vergauwe, E., & Ricker, T. J. (2017). Categorical working memory representations are used in delayed estimation of continuous colors. Journal of Experimental Psychology: Human Perception and Performance, 43, 30–54. DOI: 10.1037/xhp0000290
- Hitzig, S. (2008). The role of age and circadian arousal in complex task solution. Doctoral dissertation, York University.
- Ijiri, Y., & Simon, H. A. (1975). Some distributions associated with Bose-Einstein statistics. Proceedings of the National Academy of Sciences, 72, 1654–1657. DOI: 10.1073/pnas.72.5.1654
- Jensen, O., & Lisman, J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. Journal of Neuroscience, 18, 10688–10699. DOI: 10.1523/JNEUROSCI.18-24-10688.1998
- Johnson, J., Fabian, V., & Pascual-Leone, J. (1989). Quantitative hardware stages that constrain language development. Human Development, 32, 245–271. DOI: 10.1159/000276477
- Johnson, J., Im-Bolter, N., & Pascual-Leone, J. (2003). Development of mental attention in gifted and mainstream children: The role of mental capacity, inhibition, and speed of processing. Child Development, 74, 1594–1614. DOI: 10.1046/j.1467-8624.2003.00626.x
- Kamiński, J., Brzezicka, A., & Wróbel, A. (2011). Short term memory capacity (7 ± 2) predicted by theta to gamma cycle length ratio. Neurobiology of Learning and Memory, 95, 19–23. DOI: 10.1016/j.nlm.2010.10.001
- Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217. DOI: 10.1037/0096-3445.133.2.189
- Langerock, N., Vergauwe, E., Dirix, N., & Barrouillet, P. (2018). Is memory better for objects than for separate single features? The temporal hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 898–917. DOI: 10.1037/xlm0000501
- Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. DOI: 10.1038/36846
- Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell’Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22, 496–512. DOI: 10.1162/jocn.2009.21214
- Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing views of working memory. Nature Neuroscience, 17, 347–356. DOI: 10.1038/nn.3655
- Maezawa, T., & Kawahara, J. I. (2021). Commonalities of visual and auditory working memory in a spatial-updating task. Memory & Cognition, 49, 1172–1187. DOI: 10.3758/s13421-021-01151-8
- Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. DOI: 10.1037/h0043158
- Miller, R., Pascual-Leone, J., Campbell, C., & Juckes, T. (1989). Cross-cultural similarities and differences on two neo-Piagetian cognitive tasks. International Journal of Psychology, 24, 293–313. DOI: 10.1080/00207594.1989.10600049
- Morey, C. C. (2018). The case against specialized visual-spatial short-term memory. Psychological Bulletin, 144, 849–883. DOI: 10.1037/bul0000155
- Morey, C. C. (2019). Perceptual grouping boosts working memory capacity and reduces effort during retention. British Journal of Psychology, 110, 306–327. DOI: 10.1111/bjop.12355
- Morey, C. C., Cong, Y., Zheng, Y., Price, M., & Morey, R. D. (2015). The color-sharing bonus: Roles of perceptual organization and attentive processes in visual working memory. Archives of Scientific Psychology, 3, 18–29. DOI: 10.1037/arc0000014
- Morey, C. C., & Cowan, N. (2005). When do visual and verbal memories conflict? The importance of working-memory load and retrieval. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 703–713. DOI: 10.1037/0278-7393.31.4.703
- Morey, R. D. (2011). A Bayesian hierarchical method for the measurement of working memory capacity. Journal of Mathematical Psychology, 55, 8–24. DOI: 10.1016/j.jmp.2010.08.008
- Morey, R. D., & Morey, C. C. (2011). WoMMBAT: A user interface for hierarchical Bayesian estimation of working memory capacity. Behavior Research Methods, 43, 1044–1065. DOI: 10.3758/s13428-011-0114-8
- Morra, S. (2000). A new model of verbal short-term memory. Journal of Experimental Child Psychology, 75, 191–227. DOI: 10.1006/jecp.1999.2536
- Morra, S. (2001). On the information-processing demands of spatial reasoning. Thinking and Reasoning, 7, 347–365. DOI: 10.1080/13546780143000116
- Morra, S. (2015). How do subvocal rehearsal and general attentional resources contribute to verbal short-term memory span? Frontiers in Psychology, 6: 145. DOI: 10.3389/fpsyg.2015.00145
- Morra, S., Camba, R., Calvini, G., & Bracco, F. (2013). Italians do it better? M-capacity measurement and cross-linguistic differences in the Direction Following Task (DFT). Journal of Applied Psycholinguistics, 13, 9–24.
- Morra, S., Gobbo, C., Marini, Z., & Sheese, R. (2008). Cognitive development: Neo-Piagetian perspectives. New York: Lawrence Erlbaum. DOI: 10.4324/9781410618092
- Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory & Cognition, 28, 411–421. DOI: 10.1037/0278-7393.28.3.411
- Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100. DOI: 10.1016/S0079-7421(09)51002-X
- Oberauer, K. (2010). Declarative and procedural working memory: Common principles, common capacity limits? Psychologica Belgica, 50, 277–308. DOI: 10.5334/pb-50-3-4-277
- Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21, 164–169. DOI: 10.1177/0963721412444727
- Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modelling working memory: An interference model of complex span. Psychonomic Bulletin and Review, 19, 779–819. DOI: 10.3758/s13423-012-0272-4
- Pascual-Leone, J. (1970). A mathematical model for the transition rule in Piaget’s developmental stages. Acta Psychologica, 32, 301–345. DOI: 10.1016/0001-6918(70)90108-3
- Pascual-Leone, J. (1978). Compounds, confounds and models in developmental information-processing: A reply to Trabasso and Foellinger. Journal of Experimental Child Psychology, 26, 18–40. DOI: 10.1016/0022-0965(78)90106-6
- Pascual Leone, J. (2001). If the magical number is 4, how does one account for operations within working memory? Behavioral and Brain Sciences, 24, 136–138. DOI: 10.1017/S0140525X01453921
- Pascual-Leone, J., & Goodman, D. (1979). Intelligence and experience: a neo-Piagetian approach. Instructional Science, 8, 301–367. DOI: 10.1007/BF00117011
- Pascual-Leone, J., & Johnson, J. (2005).
A dialectical constructivist view of developmental intelligence . In O. Wilhelm & R. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 177–201). Thousand Oaks, CA: Sage. DOI: 10.4135/9781452233529.n11 - Pascual-Leone, J., & Johnson, J. (2011).
A developmental theory of mental attention: Its application to measurement and task analysis . In P. Barrouillet & V. Gaillard (Eds.), Cognitive development and working memory: A dialogue between neo-Piagetian theories and cognitive approaches (pp. 13–46). Hove, UK: Psychology Press. DOI: 10.4324/9780203845837 - Pascual-Leone, J., & Johnson, J. (2021). The working mind: Meaning and attention in human development. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/13474.001.0001
- Pascual-Leone, J., & Sparkman, E. (1980). The dialectics of empiricism and rationalism: A last methodological reply to Trabasso. Journal of Experimental Child Psychology, 29, 88–101. DOI: 10.1016/0022-0965(80)90093-4
- Peterson, D. J., & Berryhill, M. E. (2013). The Gestalt principle of similarity benefits visual working memory. Psychonomic Bulletin & Review, 20, 1282–1289. DOI: 10.3758/s13423-013-0460-x
- Peverill, M., McLaughlin, K. A., Finn, A. S., & Sheridan, M. A. (2016). Working memory filtering continues to develop into late adolescence. Developmental Cognitive Neuroscience, 18, 78–88. DOI: 10.1016/j.dcn.2016.02.004
- Reynolds, M. R., Niileksela, C. R., Gignac, G. E., & Sevillano, C. N. (2022). Working memory capacity development through childhood: A longitudinal analysis. Developmental Psychology, 58, 1254–1263. DOI: 10.1037/dev0001360
- Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Proceedings of the National Academy of Sciences, 105, 5975–5979. DOI: 10.1073/pnas.0711295105
- Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin and Review, 18, 324–330. DOI: 10.3758/s13423-011-0055-3
- Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Sciences, 26, 709–728. DOI: 10.1017/S0140525X03000165
- Saults, J. S., & Cowan, N. (2007). A central capacity limit to the simultaneous storage of visual and auditory arrays in working memory. Journal of Experimental Psychology: General, 136, 663–684. DOI: 10.1037/0096-3445.136.4.663
- Schneider, W., Eschman, A., & Zuccolotto, A. (2002) E-Prime. Psychology Software Tools, Inc.
- Shipstead, Z., Redick, T. S., Hicks, K. L., & Engle, R. W. (2012). The scope and control of attention as separate aspects of working memory. Memory, 20, 608–628. DOI: 10.1080/09658211.2012.691519
- Simmering, V. R., Miller, H. E. & Bohache, K. (2015). Different developmental trajectories across feature types support a dynamic field model of visual working memory development. Attention, Perception, & Psychophysics, 77, 1170–1188. DOI: 10.3758/s13414-015-0832-6
- Simmering, V. R., & Perone, S. (2013). Working memory capacity as a dynamic process. Frontiers in Psychology, 3:
567 , 1–26. DOI: 10.3389/fpsyg.2012.00567 - Sims, C. R., Jacobs, R. A., & Knill, D. C. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119, 807–830. DOI: 10.1037/a0029856
- Spotorno, S., Tatler, B. W., & Faure, S. (2013). Semantic consistency versus perceptual salience in visual scenes: Findings from change detection. Acta Psychologica, 142, 168–176. DOI: 10.1016/j.actpsy.2012.12.009
- Thyer, W., Adam, K. C. S., Diaz, G. K., Velázquez, Sánchez, G. N., Vogel, E. K., & Awh, E. (2022). Storage in visual working memory recruits a content-independent pointer system. Psychological Science, 33, 1680–1694. DOI: 10.1177/09567976221090923
- Tuckwell, H. C., & Koziol, J. A. (1987). Logistic population growth under random dispersal. Bulletin of Mathematical Biology, 49, 495–506. DOI: 10.1016/S0092-8240(87)80010-1
- Uittenhove, K., Chaabi, L., Camos, V., & Barrouillet, P. (2019). Is working memory storage intrinsically domain-specific? Journal of Experimental Psychology: General, 148, 2027–2057. DOI: 10.1037/xge0000566
- Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104–132. DOI: 10.1037/0033-295X.114.1.104
- Unsworth, N., Miller, A. L., & Robinson, M. K. (2021). Are individual differences in attention control related to working memory capacity? A latent variable mega-analysis. Journal of Experimental Psychology: General, 150, 1322–1357. DOI: 10.1037/xge0001000
- van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121, 124–149. DOI: 10.1037/a0035234
- Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21, 384–390. DOI: 10.1177/0956797610361340
- Vergauwe, E., Camos, V., & Barrouillet, P. (2014). The impact of storage on processing: How is information maintained in working memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 1072–1095. DOI: 10.1037/a0035779
- Vergauwe, E., & Cowan, N. (2015). Working memory units are all in your head: Factors that influence whether features or objects are the favored units. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1104–1116. DOI: 10.1037/xlm0000108
- Vergauwe, E., Dewaele, N., Langerock, N., & Barrouillet, P. (2012). Evidence for a central pool of general resources in working memory. Journal of Cognitive Psychology, 24, 359–366. DOI: 10.1080/20445911.2011.640625
- Vergauwe, E., von Bastian, C. C., Rostova, R., & Morey, C. C. (2022). Storage and processing in working memory: A single, domain-general resource explains multitasking. Journal of Experimental Psychology: General, 151, 285–301. DOI: 10.1037/xge0000895
- Wagner, B. T., Shaffer, L. A., Ivanson, O. A., & Jones, J. A. (2021). Assessing working memory capacity through picture span and feature binding with visual-graphic symbols during a visual search task with typical children and adults. Augmentative and Alternative Communication, 37, 39–51. DOI: 10.1080/07434618.2021.1879932
- Williams, J. R., Robinson, M. M., Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2022). You cannot “count” how many items people remember in visual working memory: The importance of signal-detection based measures for understanding change detection performance. Journal of Experimental Psychology: Human Perception and Performance, 48, 1390–1409. DOI: 10.1037/xhp0001055
- Wilson, K. E., Adamo, M., Barense, M. D., & Ferber, S. (2012). To bind or not to bind: Addressing the question of object representation in visual short-term memory. Journal of Vision, 12, 1–16. DOI: 10.1167/12.8.14
- Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91–95. DOI: 10.1038/nature04262
- Xu, Z., Adam, K. C. S., Fang, X., & Vogel, E. K. (2018). The reliability and stability of working memory capacity. Behavioral Research, 50, 576–588. DOI: 10.3758/s13428-017-0886-6
- Zhang, W. W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22, 1434–1441. DOI: 10.1177/0956797611417006
