References
- 1Albertella, L., Le Pelley, M. E., Chamberlain, S. R., Westbrook, F., Fontenelle, L. F., Segrave, R., Lee, R., Pearson, D., & Yücel, M. (2019). Reward-related attentional capture is associated with severity of addictive and obsessive–compulsive behaviors. Psychology of Addictive Behaviors, 33(5), 495–502. DOI: 10.1037/adb0000484
- 2Anderson, B. A. (2021). An adaptive view of attentional control. American Psychologist, 76(9), 1410–1422. DOI: 10.1037/amp0000917
- 3Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A., Brašić, J. R., George, N., Frolov, B., Courtney, S. M., & Yantis, S. (2016). The Role of Dopamine in Value-Based Attentional Orienting. Current Biology: CB, 26(4), 550–555. DOI: 10.1016/j.cub.2015.12.062
- 4Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371. DOI: 10.1073/pnas.1104047108
- 5Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191(3), 391–431. DOI: 10.1007/s00213-006-0578-x
- 6Bromberg-Martin, E. S., & Monosov, I. E. (2020). Neural circuitry of information seeking. Current Opinion in Behavioral Sciences, 35, 62–70. DOI: 10.1016/j.cobeha.2020.07.006
- 7Cogliati Dezza, I., Cleeremans, A., & Alexander, W. H. (2022). Independent and interacting value systems for reward and information in the human brain. eLife, 11,
e66358 . DOI: 10.7554/eLife.66358 - 8Cogliati Dezza, I., Molinaro, G., & Verguts, T. (2023). A reinforcement learning framework for information-seeking and information-avoidance. Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45).
https://escholarship.org/uc/item/71d9j52c - 9Colaizzi, J. M., Flagel, S. B., Joyner, M. A., Gearhardt, A. N., Stewart, J. L., & Paulus, M. P. (2020). Mapping sign-tracking and goal-tracking onto human behaviors. Neuroscience & Biobehavioral Reviews, 111, 84–94. DOI: 10.1016/j.neubiorev.2020.01.018
- 10Cole, S., & McNally, G. P. (2007). Temporal-difference prediction errors and Pavlovian fear conditioning: Role of NMDA and opioid receptors. Behavioral Neuroscience, 121(5), 1043–1052. DOI: 10.1037/0735-7044.121.5.1043
- 11Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1. DOI: 10.20982/tqmp.01.1.p042
- 12Cunningham, C. A., & Egeth, H. E. (2016). Taming the White Bear: Initial Costs and Eventual Benefits of Distractor Inhibition. Psychological Science, 27(4), 476–485. DOI: 10.1177/0956797615626564
- 13de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12. DOI: 10.3758/s13428-014-0458-y
- 14de Vries, I. E. J., Savran, E., van Driel, J., & Olivers, C. N. L. (2019). Oscillatory Mechanisms of Preparing for Visual Distraction. Journal of Cognitive Neuroscience, 31(12), 1873–1894. DOI: 10.1162/jocn_a_01460
- 15Failing, M., Nissens, T., Pearson, D., Le Pelley, M., & Theeuwes, J. (2015). Oculomotor capture by stimuli that signal the availability of reward. Journal of Neurophysiology, 114(4), 2316–2327. DOI: 10.1152/jn.00441.2015
- 16Failing, M., & Theeuwes, J. (2017). Don’t let it distract you: How information about the availability of reward affects attentional selection. Attention, Perception & Psychophysics, 79(8), 2275–2298. DOI: 10.3758/s13414-017-1376-8
- 17Filimon, F., Nelson, J. D., Sejnowski, T. J., Sereno, M. I., & Cottrell, G. W. (2020). The ventral striatum dissociates information expectation, reward anticipation, and reward receipt. Proceedings of the National Academy of Sciences, 117(26), 15200–15208. DOI: 10.1073/pnas.1911778117
- 18FitzGibbon, L., Lau, J. K. L., & Murayama, K. (2020). The seductive lure of curiosity: Information as a motivationally salient reward. Current Opinion in Behavioral Sciences, 35, 21–27. DOI: 10.1016/j.cobeha.2020.05.014
- 19Flagel, S. B., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 191(3), 599–607. DOI: 10.1007/s00213-006-0535-8
- 20Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3–4), 227–246. DOI: 10.1080/13506285.2019.1600090
- 21Gaspelin, N., & Luck, S. J. (2018). The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends in Cognitive Sciences, 22(1), 79–92. DOI: 10.1016/j.tics.2017.11.001
- 22Gottlieb, J. (2012). Attention, learning and the value of information. Neuron, 76(2), 281–295. DOI: 10.1016/j.neuron.2012.09.034
- 23Gottlieb, J. (2018). Understanding active sampling strategies: Empirical approaches and implications for attention and decision research. Cortex, 102, 150–160. DOI: 10.1016/j.cortex.2017.08.019
- 24Gottlieb, J., Cohanpour, M., Li, Y., Singletary, N., & Zabeh, E. (2020). Curiosity, information demand and attentional priority. Current Opinion in Behavioral Sciences, 35, 83–91. DOI: 10.1016/j.cobeha.2020.07.016
- 25Gottlieb, J., & Oudeyer, P.-Y. (2018). Towards a neuroscience of active sampling and curiosity. Nature Reviews Neuroscience, 19(12), Article 12. DOI: 10.1038/s41583-018-0078-0
- 26Grégoire, L., Britton, M. K., & Anderson, B. A. (2022). Motivated suppression of value- and threat-modulated attentional capture. Emotion, 22(4), 780–794. DOI: 10.1037/emo0000777
- 27Hearst, E., & Jenkins, H. M. (1974). Sign-tracking: The stimulus-reinforcer relation and directed action. Psychonomic Society.
- 28Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103. DOI: 10.1523/JNEUROSCI.1026-10.2010
- 29Horan, M., Daddaoua, N., & Gottlieb, J. (2019). Parietal neurons encode information sampling based on decision uncertainty. Nature Neuroscience, 22(8), Article 8. DOI: 10.1038/s41593-019-0440-1
- 30Kamin, L. J. (1968). Attention-like processes in classical conditioning. 9–32.
https://ntrs.nasa.gov/citations/19680013711 - 31Kehoe, E. J., Schreurs, B. G., & Graham, P. (1987). Temporal primacy overrides prior training in serial compound conditioning of the rabbit’s nictitating membrane response. Animal Learning & Behavior, 15(4), 455–464. DOI: 10.3758/BF03205056
- 32Kobayashi, K., Ravaioli, S., Baranès, A., Woodford, M., & Gottlieb, J. (2019). Diverse motives for human curiosity. Nature Human Behaviour, 3(6), Article 6. DOI: 10.1038/s41562-019-0589-3
- 33Konovalov, A., & Krajbich, I. (2016). Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning. Nature Communications, 7(1), Article 1. DOI: 10.1038/ncomms12438
- 34Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N., & Wills, A. J. (2016). Attention and associative learning in humans: An integrative review. Psychological Bulletin, 142(10), 1111–1140. DOI: 10.1037/bul0000064
- 35Le Pelley, M. E., Pearson, D., Griffiths, O., & Beesley, T. (2015). When goals conflict with values: Counterproductive attentional and oculomotor capture by reward-related stimuli. Journal of Experimental Psychology. General, 144(1), 158–171. DOI: 10.1037/xge0000037
- 36Le Pelley, M. E., Pearson, D., Porter, A., Yee, H., & Luque, D. (2019). Oculomotor capture is influenced by expected reward value but (maybe) not predictiveness. Quarterly Journal of Experimental Psychology, 72, 168–181. DOI: 10.1080/17470218.2017.1313874
- 37Le Pelley, M. E., Ung, R., Mine, C., Most, S. B., Watson, P., Pearson, D., & Theeuwes, J. (2022). Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search. Attention, Perception & Psychophysics. DOI: 10.3758/s13414-021-02426-7
- 38Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course (pp. xiii, 264). Cambridge University Press. DOI: 10.1017/CBO9781139087759
- 39Mahlberg, J., Pearson, D., Le Pelley, M., & Watson, P. (2023). Physically salient stimuli capture attention despite external motivation to ignore. Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45).
https://escholarship.org/uc/item/6859r81d - 40Mikhael, S., Watson, P., Anderson, B. A., & Le Pelley, M. E. (2021). You do it to yourself: Attentional capture by threat-signaling stimuli persists even when entirely counterproductive. Emotion, 21(8), 1691–1698. DOI: 10.1037/emo0001003
- 41Mine, C., & Saiki, J. (2015). Task-irrelevant stimulus-reward association induces value-driven attentional capture. Attention, Perception, & Psychophysics, 77(6), 1896–1907. DOI: 10.3758/s13414-015-0894-5
- 42Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74(8), 1590–1605. DOI: 10.3758/s13414-012-0358-0
- 43Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4, 61–64. DOI: 10.20982/tqmp.04.2.p061
- 44Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 31(8), 1707–1714. DOI: 10.1080/02699931.2016.1248905
- 45Pearson, D., Donkin, C., Tran, S. C., Most, S. B., & Le Pelley, M. E. (2015). Cognitive control and counterproductive oculomotor capture by reward-related stimuli. Visual Cognition, 23(1–2), 41–66. DOI: 10.1080/13506285.2014.994252
- 46Pearson, D., & Le Pelley, M. E. (2020). Learning to avoid looking: Competing influences of reward on overt attentional selection. Psychonomic Bulletin & Review, 27(5), 998–1005. DOI: 10.3758/s13423-020-01770-3
- 47Pearson, D., & Le Pelley, M. E. (2021). Reward encourages reactive, goal-directed suppression of attention. Journal of Experimental Psychology: Human Perception and Performance, 47(10), 1348–1364. DOI: 10.1037/xhp0000946
- 48Pearson, D., Osborn, R., Whitford, T. J., Failing, M., Theeuwes, J., & Le Pelley, M. E. (2016). Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. Attention, Perception, & Psychophysics, 78(7), 2226–2240. DOI: 10.3758/s13414-016-1135-2
- 49Rusz, D., Le Pelley, M. E., Kompier, M. A. J., Mait, L., & Bijleveld, E. (2020). Reward-driven distraction: A meta-analysis. Psychological Bulletin, 146(10), 872–899. DOI: 10.1037/bul0000296
- 50Salvucci, D., & Goldberg, J. (2000). Identifying fixations and saccades in eye-tracking protocols (pp. 71–78). DOI: 10.1145/355017.355028
- 51Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470. DOI: 10.3758/APP.72.6.1455
- 52Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135–170. DOI: 10.1037/0033-295X.88.2.135
- 53Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. DOI: 10.3758/BF03211656
- 54Theeuwes, J. (1994). Endogenous and exogenous control of visual selection. Perception, 23(4), 429–440. DOI: 10.1068/p230429
- 55van Lieshout, L. L., de Lange, F. P., & Cools, R. (2020). Why so curious? Quantifying mechanisms of information seeking. Current Opinion in Behavioral Sciences, 35, 112–117. DOI: 10.1016/j.cobeha.2020.08.005
- 56van Zoest, W., Huber-Huber, C., Weaver, M. D., & Hickey, C. (2021). Strategic Distractor Suppression Improves Selective Control in Human Vision. The Journal of Neuroscience, 41(33), 7120–7135. DOI: 10.1523/JNEUROSCI.0553-21.2021
- 57Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878. DOI: 10.3758/s13423-012-0280-4
- 58Wang, B., & Theeuwes, J. (2018a). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860–870. DOI: 10.3758/s13414-018-1493-z
- 59Wang, B., & Theeuwes, J. (2018b). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception & Psychophysics, 80(7), 1763–1774. DOI: 10.3758/s13414-018-1562-3
- 60Watson, P., Pavri, Y., Le, J., Pearson, D., & Pelley, M. E. L. (2022). Attentional capture by signals of reward persists following outcome devaluation. Learning & Memory, 29(7), 181–191. DOI: 10.1101/lm.053569.122
- 61Watson, P., Pearson, D., Most, S. B., Theeuwes, J., Wiers, R. W., & Le Pelley, M. E. (2019). Attentional capture by Pavlovian reward-signalling distractors in visual search persists when rewards are removed. PLOS ONE, 14(12),
e0226284 . DOI: 10.1371/journal.pone.0226284 - 62Watson, P., Pearson, D., Wiers, R. W., & Le Pelley, M. E. (2019). Prioritizing pleasure and pain: Attentional capture by reward-related and punishment-related stimuli. Current Opinion in Behavioral Sciences, 26, 107–113. DOI: 10.1016/j.cobeha.2018.12.002
- 63Watson, P., Prior, K., Ridley, N., Monds, L., Manning, V., Wiers, R. W., & Le Pelley, M. E. (2024). Sign-tracking to non-drug reward is related to severity of alcohol-use problems in a sample of individuals seeking treatment. Addictive Behaviors, 154, 108010. DOI: 10.1016/j.addbeh.2024.108010
