References
- 1Abdulkadiroğlu, A., Angrist, J., & Pathak, P. (2014). The elite illusion: Achievement effects at Boston and New York exam schools. Econometrica: Journal of the Econometric Society, 82(1), 137–196. DOI: 10.3982/ECTA10266
- 2Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: the same or different constructs? Psychological Bulletin, 131(1), 30–60. DOI: 10.1037/0033-2909.131.1.30
- 3Aristodemou, M., Rommelse, N., & Kievit, R. (2023). Attentiveness modulates reaction-time variability: findings from a population-based sample of 1032 children. Psyarxiv.Com.
https://psyarxiv.com/j2n5w/download?format=pdf . DOI: 10.31234/osf.io/j2n5w - 4Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388. DOI: 10.1080/10705511.2017.1406803
- 5Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. DOI: 10.1146/annurev.neuro.28.061604.135709
- 6Bergman Nutley, S., Söderqvist, S., Bryde, S., Thorell, L. B., Humphreys, K., & Klingberg, T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Developmental Science, 14(3), 591–601. DOI: 10.1111/j.1467-7687.2010.01022.x
- 7Bignardi, G., Dalmaijer, E. S., Anwyl-Irvine, A., & Astle, D. E. (2021). Collecting big data with small screens: Group tests of children’s cognition with touchscreen tablets are reliable and valid. Behavior Research Methods, 53(4), 1515–1529. DOI: 10.3758/s13428-020-01503-3
- 8Britton, T. C., Meyer, B. U., & Benecke, R. (1991). Variability of cortically evoked motor responses in multiple sclerosis. Electroencephalography and Clinical Neurophysiology, 81(3), 186–194. DOI: 10.1016/0168-5597(91)90071-5
- 9Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., Čukić, I., & Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ, 357,
j2708 . DOI: 10.1136/bmj.j2708 - 10Cohen, M. R., & Maunsell, J. H. R. (2010). A neuronal population measure of attention predicts behavioral performance on individual trials. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(45), 15241–15253. DOI: 10.1523/JNEUROSCI.2171-10.2010
- 11Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113–25. DOI: 10.1016/j.biopsych.2011.03.028
- 12Deary, I. J., Cox, S. R., & Hill, W. D. (2021). Genetic variation, brain, and intelligence differences. Molecular Psychiatry. DOI: 10.1038/s41380-021-01027-y
- 13Dhawale, A. K., Smith, M. A., & Ölveczky, B. P. (2017). The Role of Variability in Motor Learning. Annual Review of Neuroscience, 40, 479–498. DOI: 10.1146/annurev-neuro-072116-031548
- 14Duflo, E., Dupas, P., & Kremer, M. (2011). Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya. The American Economic Review, 101(5), 1739–1774. DOI: 10.1257/aer.101.5.1739
- 15Du, H., & Wang, L. (2018). Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs. Multivariate Behavioral Research, 53(4), 502–520. DOI: 10.1080/00273171.2018.1457939
- 16Enders, C. K., & Bandalos, D. L. (2001). The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 8(3), 430–457. DOI: 10.1207/S15328007SEM0803_5
- 17Epstein, J. N., Karalunas, S. L., Tamm, L., Dudley, J. A., Lynch, J. D., Altaye, M., Simon, J. O., Maloney, T. C., & Atluri, G. (2023). Examining reaction time variability on the stop-signal task in the ABCD study. Journal of the International Neuropsychological Society: JINS, 29(5), 492–502. DOI: 10.1017/S1355617722000431
- 18Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292–303. DOI: 10.1038/nrn2258
- 19Fischer, K. W., & Bidell, T. R. (1998). Dynamic development of psychological structures in action and thought. Handbook of Child Psychology: Theoretical Models of Human Development., Volume 1, 5th Ed., 1, 467–561.
- 20Fiske, D. W., & Rice, L. (1955). Intra-individual response variability. Psychological Bulletin, 52(3), 217–250. DOI: 10.1037/h0045276
- 21Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009). Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nature Neuroscience, 12(8), 1062–1068. DOI: 10.1038/nn.2342
- 22Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(27), 8726–8733. DOI: 10.1523/JNEUROSCI.2145-09.2009
- 23Galeano-Keiner, E. M., Neubauer, A. B., Irmer, A., & Schmiedek, F. (2022). Daily fluctuations in children’s working memory accuracy and precision: Variability at multiple time scales and links to daily sleep behavior and fluid intelligence. Cognitive Development, 64(101260). DOI: 10.1016/j.cogdev.2022.101260
- 24Galeano Weber, E. M., Dirk, J., & Schmiedek, F. (2018). Variability in the Precision of Children’s Spatial Working Memory. Journal of Intelligence, 6(1). DOI: 10.3390/jintelligence6010008
- 25Garrett, D. D., Kovacevic, N., & McIntosh, A. R. (2011). The importance of being variable. Journal of Neurosci.
https://www.jneurosci.org/content/31/12/4496.short . DOI: 10.1523/JNEUROSCI.5641-10.2011 - 26Gathercole, S. E., Pickering, S. J., & Knight, C. (2004). Working memory skills and educational attainment: Evidence from national curriculum assessments at 7 and 14 years of age. The Official Journal ….
https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.934 . DOI: 10.1002/acp.934 - 27Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., Aboody, R., Fung, H., & Dahl, R. E. (2017). Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 7892–7899. DOI: 10.1073/pnas.1700811114
- 28Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study. Multivariate Behavioral Research, 53(6), 820–841. DOI: 10.1080/00273171.2018.1446819
- 29Hauser, T. U., Fiore, V. G., Moutoussis, M., & Dolan, R. J. (2016). Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis. Trends in Neurosciences, 39(2), 63–73. DOI: 10.1016/j.tins.2015.12.009
- 30Horn, J. L. (1966). Final report: Short term fluctuations in intelligence: a research project supported by a NASA grant in the space-related sciences. Denver Research Institute.
- 31Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. DOI: 10.1080/10705519909540118
- 32Hull, C. L. (1943). Principles of behavior: an introduction to behavior theory. 422.
https://psycnet.apa.org/fulltext/1944-00022-000.pdf - 33Janssen, A. J. W. M., Oostendorp, R. A. B., Akkermans, R. P., Steiner, K., Kollée, L. A. A., & Nijhuis-van der Sanden, M. W. G. (2016). High variability of individual longitudinal motor performance over five years in very preterm infants. Research in Developmental Disabilities, 59, 306–317. DOI: 10.1016/j.ridd.2016.09.017
- 34Jastrzębski, J., Ciechanowska, I., & Chuderski, A. (2018). The strong link between fluid intelligence and working memory cannot be explained away by strategy use. Intelligence, 66, 44–53. DOI: 10.1016/j.intell.2017.11.002
- 35Jensen, A. R. (1982).
Reaction Time and Psychometric g . In H. J. Eysenck (Ed.), A Model for Intelligence (pp. 93–132). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-68664-1_4 - 36Judd, N., & Klingberg, T. (2021). Training spatial cognition enhances mathematical learning in a randomized study of 17,000 children. Nature Human Behaviour, 5, 1548–1554. DOI: 10.1038/s41562-021-01118-4
- 37Judd, N., Klingberg, T., & Sjöwall, D. (2021). Working memory capacity, variability, and response to intervention at age 6 and its association to inattention and mathematics age 9. Cognitive Development, 58,
101013 . DOI: 10.1016/j.cogdev.2021.101013 - 38Karalunas, S. L., Geurts, H. M., Konrad, K., Bender, S., & Nigg, J. T. (2014). Annual research review: Reaction time variability in ADHD and autism spectrum disorders: measurement and mechanisms of a proposed trans-diagnostic phenotype. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(6), 685–710. DOI: 10.1111/jcpp.12217
- 39Kautto, A., Railo, H., & Mainela-Arnold, E. (2023). Introducing the intra-individual variability hypothesis in explaining individual differences in language development. DOI: 10.31234/osf.io/nkuv9
- 40Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mechanisms: A correlational analysis. Acta Psychologica, 60(2), 173–191. DOI: 10.1016/0001-6918(85)90054-X
- 41Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clinical Psychology Review, 33(6), 795–811. DOI: 10.1016/j.cpr.2013.06.001
- 42Könen, T., Dirk, J., & Schmiedek, F. (2015). Cognitive benefits of last night’s sleep: daily variations in children’s sleep behavior are related to working memory fluctuations. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 56(2), 171–182. DOI: 10.1111/jcpp.12296
- 43Kovacs, K., & Conway, A. R. A. (2016). Process Overlap Theory: A Unified Account of the General Factor of Intelligence. Psychological Inquiry, 27(3), 151–177. DOI: 10.1080/1047840X.2016.1153946
- 44Laurence, P. G., & Macedo, E. C. (2023). Cognitive strategies in matrix-reasoning tasks: State of the art. Psychonomic Bulletin & Review, 30(1), 147–159. DOI: 10.3758/s13423-022-02160-7
- 45Li, S.-C., Huxhold, O., & Schmiedek, F. (2004). Aging and attenuated processing robustness. Evidence from cognitive and sensorimotor functioning. Gerontology, 50(1), 28–34. DOI: 10.1159/000074386
- 46Lövdén, M., Garzón, B., & Lindenberger, U. (2020). Human skill learning: expansion, exploration, selection, and refinement. Current Opinion in Behavioral Sciences, 36, 163–168. DOI: 10.1016/j.cobeha.2020.11.002
- 47Lövdén, M., Li, S.-C., Shing, Y. L., & Lindenberger, U. (2007). Within-person trial-to-trial variability precedes and predicts cognitive decline in old and very old age: longitudinal data from the Berlin Aging Study. Neuropsychologia, 45(12), 2827–2838. DOI: 10.1016/j.neuropsychologia.2007.05.005
- 48MacDonald, S. W. S., Hultsch, D. F., & Dixon, R. A. (2003). Performance variability is related to change in cognition: evidence from the Victoria Longitudinal Study. Psychology and Aging, 18(3), 510–523. DOI: 10.1037/0882-7974.18.3.510
- 49MacDonald, S. W. S., Li, S.-C., & Bäckman, L. (2009). Neural underpinnings of within-person variability in cognitive functioning. Psychology and Aging, 24(4), 792–808. DOI: 10.1037/a0017798
- 50Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2023). cluster: Cluster Analysis Basics and Extensions.
https://CRAN.R-project.org/package=cluster - 51McCormick, E. M., Cam-Can, & Kievit, R. A. (2023). Poorer white matter microstructure predicts slower and more variable reaction time performance: evidence for a neural noise hypothesis in a large lifespan cohort. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. DOI: 10.1523/JNEUROSCI.1042-22.2023
- 52McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10. DOI: 10.1016/j.intell.2008.08.004
- 53McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610–635. DOI: 10.1037/met0000250
- 54Mueller, S., Wang, D., Fox, M. D., Yeo, B. T. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Lu, J., & Liu, H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron, 77(3), 586–595. DOI: 10.1016/j.neuron.2012.12.028
- 55Nemmi, F., Helander, E., Helenius, O., Almeida, R., Hassler, M., Räsänen, P., & Klingberg, T. (2016). Behavior and neuroimaging at baseline predict individual response to combined mathematical and working memory training in children. Developmental Cognitive Neuroscience, 20, 43–51. DOI: 10.1016/j.dcn.2016.06.004
- 56Nesselroade, J. R. (1991). The Warp and the Woof of the Developmental Fabric. 19.
- 57Neubauer, A. B., Dirk, J., & Schmiedek, F. (2019). Momentary working memory performance is coupled with different dimensions of affect for different children: A mixture model analysis of ambulatory assessment data. Developmental Psychology, 55(4), 754–766. DOI: 10.1037/dev0000668
- 58Olveczky, B. P., Andalman, A. S., & Fee, M. S. (2005). Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biology, 3(5),
e153 . DOI: 10.1371/journal.pbio.0030153 - 59Pertermann, M., Bluschke, A., Roessner, V., & Beste, C. (2019). The Modulation of Neural Noise Underlies the Effectiveness of Methylphenidate Treatment in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 4(8), 743–750. DOI: 10.1016/j.bpsc.2019.03.011
- 60Rabbitt, P., Osman, P., Moore, B., & Stollery, B. (2001). There are stable individual differences in performance variability, both from moment to moment and from day to day. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 54(4), 981–1003. DOI: 10.1080/713756013
- 61Ram, N., Conroy, D. E., Pincus, A. L., Lorek, A., Rebar, A., Roche, M. J., Coccia, M., Morack, J., Feldman, J., & Gerstorf, D. (2014). Examining the Interplay of Processes Across Multiple Time-Scales: Illustration With the Intraindividual Study of Affect, Health, and Interpersonal Behavior (iSAHIB). Research in Human Development, 11(2), 142–160. DOI: 10.1080/15427609.2014.906739
- 62Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53(3), 195–237. DOI: 10.1016/j.cogpsych.2005.10.002
- 63Ratcliff, R., & Van Dongen, H. P. A. (2011). Diffusion model for one-choice reaction-time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 11285–11290. DOI: 10.1073/pnas.1100483108
- 64R Core Team. (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
http://www.R-project.org/ - 65Reitsema, A. M., Jeronimus, B. F., van Dijk, M., Ceulemans, E., van Roekel, E., Kuppens, P., & de Jonge, P. (2023). Distinguishing dimensions of emotion dynamics across 12 emotions in adolescents’ daily lives. Emotion, 23(6), 1549–1561. DOI: 10.1037/emo0001173
- 66Revelle, W. (2018). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University.
https://CRAN.R-project.org/package=psych - 67Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). Journal of Statistical Software, 48(2), 1–36. DOI: 10.18637/jss.v048.i02
- 68Schmiedek, F., Oberauer, K., Wilhelm, O., Süss, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology. General, 136(3), 414–429. DOI: 10.1037/0096-3445.136.3.414
- 69Siegler, R. (2007a). Cognitive variability. Developmental Science.
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00571.x - 70Siegler, R. (2007b). Microgenetic Analyses of Learning. In R. Siegler & D. Kuhn (Eds.), Handbook of child Psychology (Vol. 6). DOI: 10.1002/9780470147658.chpsy0211
- 71Soto, C. J. (2019). How Replicable Are Links Between Personality Traits and Consequential Life Outcomes? The Life Outcomes of Personality Replication Project. Psychological Science, 30(5), 711–727. DOI: 10.1177/0956797619831612
- 72Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. MIT Press/Bradford Book Series in Cognitive Psychology., 376.
https://psycnet.apa.org/fulltext/1994-98256-000.pdf - 73Trull, T. J., & Ebner-Priemer, U. (2014). The Role of Ambulatory Assessment in Psychological Science. Current Directions in Psychological Science, 23(6), 466–470. DOI: 10.1177/0963721414550706
- 74Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The Relation Between Self-Beliefs and Academic Achievement: A Meta-Analytic Review. Educational Psychologist, 39(2), 111–133. DOI: 10.1207/s15326985ep3902_3
- 75Van den Driessche, C., Chevrier, F., Cleeremans, A., & Sackur, J. (2019). Lower Attentional Skills predict increased exploratory foraging patterns. Scientific Reports, 9(1),
10948 . DOI: 10.1038/s41598-019-46761-0 - 76Van Dijk, M., & Van Geert, P. (2014).
The nature and meaning of intraindividual variability in development in the early life span . In Handbook of intraindividual variability across the life span (pp. 37–58). Routledge. - 77van Geert, P. (1991). A dynamic systems model of cognitive and language growth. Psychological Review, 98(1), 3–53. DOI: 10.1037/0033-295X.98.1.3
- 78Waschke, L., Kloosterman, N. A., Obleser, J., & Garrett, D. D. (2021). Behavior needs neural variability. Neuron, 109(5), 751–766. DOI: 10.1016/j.neuron.2021.01.023
- 79White, S. L. J., & Szűcs, D. (2012). Representational change and strategy use in children’s number line estimation during the first years of primary school. Behavioral and Brain Functions: BBF, 8,
1 . DOI: 10.1186/1744-9081-8-1 - 80Wiker, T., Norbom, L. B., Beck, D., Agartz, I., Andreassen, O. A., Alnæs, D., Dahl, A., Eilertsen, E. M., Moberget, T., Ystrøm, E., Westlye, L. T., Lebel, C., Huster, R. J., & Tamnes, C. K. (2023). Reaction Time Variability in Children Is Specifically Associated With Attention Problems and Regional White Matter Microstructure. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 8(8), 832–840. DOI: 10.1016/j.bpsc.2023.03.010
- 81Williams, D. R., Mulder, J., Rouder, J. N., & Rast, P. (2021). Beneath the surface: Unearthing within-person variability and mean relations with Bayesian mixed models. Psychological Methods, 26(1), 74–89. DOI: 10.1037/met0000270
- 82Wu, H. G., Miyamoto, Y. R., Gonzalez Castro, L. N., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312–321. DOI: 10.1038/nn.3616
