Have a personal or library account? Click to login
Interindividual Differences in Cognitive Variability Are Ubiquitous and Distinct From Mean Performance in a Battery of Eleven Tasks Cover

Interindividual Differences in Cognitive Variability Are Ubiquitous and Distinct From Mean Performance in a Battery of Eleven Tasks

Open Access
|May 2024

References

  1. 1Abdulkadiroğlu, A., Angrist, J., & Pathak, P. (2014). The elite illusion: Achievement effects at Boston and New York exam schools. Econometrica: Journal of the Econometric Society, 82(1), 137196. DOI: 10.3982/ECTA10266
  2. 2Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: the same or different constructs? Psychological Bulletin, 131(1), 3060. DOI: 10.1037/0033-2909.131.1.30
  3. 3Aristodemou, M., Rommelse, N., & Kievit, R. (2023). Attentiveness modulates reaction-time variability: findings from a population-based sample of 1032 children. Psyarxiv.Com. https://psyarxiv.com/j2n5w/download?format=pdf. DOI: 10.31234/osf.io/j2n5w
  4. 4Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359388. DOI: 10.1080/10705511.2017.1406803
  5. 5Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403450. DOI: 10.1146/annurev.neuro.28.061604.135709
  6. 6Bergman Nutley, S., Söderqvist, S., Bryde, S., Thorell, L. B., Humphreys, K., & Klingberg, T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Developmental Science, 14(3), 591601. DOI: 10.1111/j.1467-7687.2010.01022.x
  7. 7Bignardi, G., Dalmaijer, E. S., Anwyl-Irvine, A., & Astle, D. E. (2021). Collecting big data with small screens: Group tests of children’s cognition with touchscreen tablets are reliable and valid. Behavior Research Methods, 53(4), 15151529. DOI: 10.3758/s13428-020-01503-3
  8. 8Britton, T. C., Meyer, B. U., & Benecke, R. (1991). Variability of cortically evoked motor responses in multiple sclerosis. Electroencephalography and Clinical Neurophysiology, 81(3), 186194. DOI: 10.1016/0168-5597(91)90071-5
  9. 9Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., Čukić, I., & Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ, 357, j2708. DOI: 10.1136/bmj.j2708
  10. 10Cohen, M. R., & Maunsell, J. H. R. (2010). A neuronal population measure of attention predicts behavioral performance on individual trials. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(45), 1524115253. DOI: 10.1523/JNEUROSCI.2171-10.2010
  11. 11Cools, R., & D’Esposito, M. (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e11325. DOI: 10.1016/j.biopsych.2011.03.028
  12. 12Deary, I. J., Cox, S. R., & Hill, W. D. (2021). Genetic variation, brain, and intelligence differences. Molecular Psychiatry. DOI: 10.1038/s41380-021-01027-y
  13. 13Dhawale, A. K., Smith, M. A., & Ölveczky, B. P. (2017). The Role of Variability in Motor Learning. Annual Review of Neuroscience, 40, 479498. DOI: 10.1146/annurev-neuro-072116-031548
  14. 14Duflo, E., Dupas, P., & Kremer, M. (2011). Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya. The American Economic Review, 101(5), 17391774. DOI: 10.1257/aer.101.5.1739
  15. 15Du, H., & Wang, L. (2018). Reliabilities of Intraindividual Variability Indicators with Autocorrelated Longitudinal Data: Implications for Longitudinal Study Designs. Multivariate Behavioral Research, 53(4), 502520. DOI: 10.1080/00273171.2018.1457939
  16. 16Enders, C. K., & Bandalos, D. L. (2001). The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models. Structural Equation Modeling: A Multidisciplinary Journal, 8(3), 430457. DOI: 10.1207/S15328007SEM0803_5
  17. 17Epstein, J. N., Karalunas, S. L., Tamm, L., Dudley, J. A., Lynch, J. D., Altaye, M., Simon, J. O., Maloney, T. C., & Atluri, G. (2023). Examining reaction time variability on the stop-signal task in the ABCD study. Journal of the International Neuropsychological Society: JINS, 29(5), 492502. DOI: 10.1017/S1355617722000431
  18. 18Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews. Neuroscience, 9(4), 292303. DOI: 10.1038/nrn2258
  19. 19Fischer, K. W., & Bidell, T. R. (1998). Dynamic development of psychological structures in action and thought. Handbook of Child Psychology: Theoretical Models of Human Development., Volume 1, 5th Ed., 1, 467561.
  20. 20Fiske, D. W., & Rice, L. (1955). Intra-individual response variability. Psychological Bulletin, 52(3), 217250. DOI: 10.1037/h0045276
  21. 21Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009). Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nature Neuroscience, 12(8), 10621068. DOI: 10.1038/nn.2342
  22. 22Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(27), 87268733. DOI: 10.1523/JNEUROSCI.2145-09.2009
  23. 23Galeano-Keiner, E. M., Neubauer, A. B., Irmer, A., & Schmiedek, F. (2022). Daily fluctuations in children’s working memory accuracy and precision: Variability at multiple time scales and links to daily sleep behavior and fluid intelligence. Cognitive Development, 64(101260). DOI: 10.1016/j.cogdev.2022.101260
  24. 24Galeano Weber, E. M., Dirk, J., & Schmiedek, F. (2018). Variability in the Precision of Children’s Spatial Working Memory. Journal of Intelligence, 6(1). DOI: 10.3390/jintelligence6010008
  25. 25Garrett, D. D., Kovacevic, N., & McIntosh, A. R. (2011). The importance of being variable. Journal of Neurosci. https://www.jneurosci.org/content/31/12/4496.short. DOI: 10.1523/JNEUROSCI.5641-10.2011
  26. 26Gathercole, S. E., Pickering, S. J., & Knight, C. (2004). Working memory skills and educational attainment: Evidence from national curriculum assessments at 7 and 14 years of age. The Official Journal …. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.934. DOI: 10.1002/acp.934
  27. 27Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., Aboody, R., Fung, H., & Dahl, R. E. (2017). Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proceedings of the National Academy of Sciences of the United States of America, 114(30), 78927899. DOI: 10.1073/pnas.1700811114
  28. 28Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study. Multivariate Behavioral Research, 53(6), 820841. DOI: 10.1080/00273171.2018.1446819
  29. 29Hauser, T. U., Fiore, V. G., Moutoussis, M., & Dolan, R. J. (2016). Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis. Trends in Neurosciences, 39(2), 6373. DOI: 10.1016/j.tins.2015.12.009
  30. 30Horn, J. L. (1966). Final report: Short term fluctuations in intelligence: a research project supported by a NASA grant in the space-related sciences. Denver Research Institute.
  31. 31Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 155. DOI: 10.1080/10705519909540118
  32. 32Hull, C. L. (1943). Principles of behavior: an introduction to behavior theory. 422. https://psycnet.apa.org/fulltext/1944-00022-000.pdf
  33. 33Janssen, A. J. W. M., Oostendorp, R. A. B., Akkermans, R. P., Steiner, K., Kollée, L. A. A., & Nijhuis-van der Sanden, M. W. G. (2016). High variability of individual longitudinal motor performance over five years in very preterm infants. Research in Developmental Disabilities, 59, 306317. DOI: 10.1016/j.ridd.2016.09.017
  34. 34Jastrzębski, J., Ciechanowska, I., & Chuderski, A. (2018). The strong link between fluid intelligence and working memory cannot be explained away by strategy use. Intelligence, 66, 4453. DOI: 10.1016/j.intell.2017.11.002
  35. 35Jensen, A. R. (1982). Reaction Time and Psychometric g. In H. J. Eysenck (Ed.), A Model for Intelligence (pp. 93132). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-68664-1_4
  36. 36Judd, N., & Klingberg, T. (2021). Training spatial cognition enhances mathematical learning in a randomized study of 17,000 children. Nature Human Behaviour, 5, 15481554. DOI: 10.1038/s41562-021-01118-4
  37. 37Judd, N., Klingberg, T., & Sjöwall, D. (2021). Working memory capacity, variability, and response to intervention at age 6 and its association to inattention and mathematics age 9. Cognitive Development, 58, 101013. DOI: 10.1016/j.cogdev.2021.101013
  38. 38Karalunas, S. L., Geurts, H. M., Konrad, K., Bender, S., & Nigg, J. T. (2014). Annual research review: Reaction time variability in ADHD and autism spectrum disorders: measurement and mechanisms of a proposed trans-diagnostic phenotype. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(6), 685710. DOI: 10.1111/jcpp.12217
  39. 39Kautto, A., Railo, H., & Mainela-Arnold, E. (2023). Introducing the intra-individual variability hypothesis in explaining individual differences in language development. DOI: 10.31234/osf.io/nkuv9
  40. 40Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mechanisms: A correlational analysis. Acta Psychologica, 60(2), 173191. DOI: 10.1016/0001-6918(85)90054-X
  41. 41Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clinical Psychology Review, 33(6), 795811. DOI: 10.1016/j.cpr.2013.06.001
  42. 42Könen, T., Dirk, J., & Schmiedek, F. (2015). Cognitive benefits of last night’s sleep: daily variations in children’s sleep behavior are related to working memory fluctuations. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 56(2), 171182. DOI: 10.1111/jcpp.12296
  43. 43Kovacs, K., & Conway, A. R. A. (2016). Process Overlap Theory: A Unified Account of the General Factor of Intelligence. Psychological Inquiry, 27(3), 151177. DOI: 10.1080/1047840X.2016.1153946
  44. 44Laurence, P. G., & Macedo, E. C. (2023). Cognitive strategies in matrix-reasoning tasks: State of the art. Psychonomic Bulletin & Review, 30(1), 147159. DOI: 10.3758/s13423-022-02160-7
  45. 45Li, S.-C., Huxhold, O., & Schmiedek, F. (2004). Aging and attenuated processing robustness. Evidence from cognitive and sensorimotor functioning. Gerontology, 50(1), 2834. DOI: 10.1159/000074386
  46. 46Lövdén, M., Garzón, B., & Lindenberger, U. (2020). Human skill learning: expansion, exploration, selection, and refinement. Current Opinion in Behavioral Sciences, 36, 163168. DOI: 10.1016/j.cobeha.2020.11.002
  47. 47Lövdén, M., Li, S.-C., Shing, Y. L., & Lindenberger, U. (2007). Within-person trial-to-trial variability precedes and predicts cognitive decline in old and very old age: longitudinal data from the Berlin Aging Study. Neuropsychologia, 45(12), 28272838. DOI: 10.1016/j.neuropsychologia.2007.05.005
  48. 48MacDonald, S. W. S., Hultsch, D. F., & Dixon, R. A. (2003). Performance variability is related to change in cognition: evidence from the Victoria Longitudinal Study. Psychology and Aging, 18(3), 510523. DOI: 10.1037/0882-7974.18.3.510
  49. 49MacDonald, S. W. S., Li, S.-C., & Bäckman, L. (2009). Neural underpinnings of within-person variability in cognitive functioning. Psychology and Aging, 24(4), 792808. DOI: 10.1037/a0017798
  50. 50Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2023). cluster: Cluster Analysis Basics and Extensions. https://CRAN.R-project.org/package=cluster
  51. 51McCormick, E. M., Cam-Can, & Kievit, R. A. (2023). Poorer white matter microstructure predicts slower and more variable reaction time performance: evidence for a neural noise hypothesis in a large lifespan cohort. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. DOI: 10.1523/JNEUROSCI.1042-22.2023
  52. 52McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 110. DOI: 10.1016/j.intell.2008.08.004
  53. 53McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610635. DOI: 10.1037/met0000250
  54. 54Mueller, S., Wang, D., Fox, M. D., Yeo, B. T. T., Sepulcre, J., Sabuncu, M. R., Shafee, R., Lu, J., & Liu, H. (2013). Individual variability in functional connectivity architecture of the human brain. Neuron, 77(3), 586595. DOI: 10.1016/j.neuron.2012.12.028
  55. 55Nemmi, F., Helander, E., Helenius, O., Almeida, R., Hassler, M., Räsänen, P., & Klingberg, T. (2016). Behavior and neuroimaging at baseline predict individual response to combined mathematical and working memory training in children. Developmental Cognitive Neuroscience, 20, 4351. DOI: 10.1016/j.dcn.2016.06.004
  56. 56Nesselroade, J. R. (1991). The Warp and the Woof of the Developmental Fabric. 19.
  57. 57Neubauer, A. B., Dirk, J., & Schmiedek, F. (2019). Momentary working memory performance is coupled with different dimensions of affect for different children: A mixture model analysis of ambulatory assessment data. Developmental Psychology, 55(4), 754766. DOI: 10.1037/dev0000668
  58. 58Olveczky, B. P., Andalman, A. S., & Fee, M. S. (2005). Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biology, 3(5), e153. DOI: 10.1371/journal.pbio.0030153
  59. 59Pertermann, M., Bluschke, A., Roessner, V., & Beste, C. (2019). The Modulation of Neural Noise Underlies the Effectiveness of Methylphenidate Treatment in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 4(8), 743750. DOI: 10.1016/j.bpsc.2019.03.011
  60. 60Rabbitt, P., Osman, P., Moore, B., & Stollery, B. (2001). There are stable individual differences in performance variability, both from moment to moment and from day to day. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 54(4), 9811003. DOI: 10.1080/713756013
  61. 61Ram, N., Conroy, D. E., Pincus, A. L., Lorek, A., Rebar, A., Roche, M. J., Coccia, M., Morack, J., Feldman, J., & Gerstorf, D. (2014). Examining the Interplay of Processes Across Multiple Time-Scales: Illustration With the Intraindividual Study of Affect, Health, and Interpersonal Behavior (iSAHIB). Research in Human Development, 11(2), 142160. DOI: 10.1080/15427609.2014.906739
  62. 62Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53(3), 195237. DOI: 10.1016/j.cogpsych.2005.10.002
  63. 63Ratcliff, R., & Van Dongen, H. P. A. (2011). Diffusion model for one-choice reaction-time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences of the United States of America, 108(27), 1128511290. DOI: 10.1073/pnas.1100483108
  64. 64R Core Team. (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org/
  65. 65Reitsema, A. M., Jeronimus, B. F., van Dijk, M., Ceulemans, E., van Roekel, E., Kuppens, P., & de Jonge, P. (2023). Distinguishing dimensions of emotion dynamics across 12 emotions in adolescents’ daily lives. Emotion, 23(6), 15491561. DOI: 10.1037/emo0001173
  66. 66Revelle, W. (2018). psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University. https://CRAN.R-project.org/package=psych
  67. 67Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). Journal of Statistical Software, 48(2), 136. DOI: 10.18637/jss.v048.i02
  68. 68Schmiedek, F., Oberauer, K., Wilhelm, O., Süss, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology. General, 136(3), 414429. DOI: 10.1037/0096-3445.136.3.414
  69. 69Siegler, R. (2007a). Cognitive variability. Developmental Science. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00571.x
  70. 70Siegler, R. (2007b). Microgenetic Analyses of Learning. In R. Siegler & D. Kuhn (Eds.), Handbook of child Psychology (Vol. 6). DOI: 10.1002/9780470147658.chpsy0211
  71. 71Soto, C. J. (2019). How Replicable Are Links Between Personality Traits and Consequential Life Outcomes? The Life Outcomes of Personality Replication Project. Psychological Science, 30(5), 711727. DOI: 10.1177/0956797619831612
  72. 72Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. MIT Press/Bradford Book Series in Cognitive Psychology., 376. https://psycnet.apa.org/fulltext/1994-98256-000.pdf
  73. 73Trull, T. J., & Ebner-Priemer, U. (2014). The Role of Ambulatory Assessment in Psychological Science. Current Directions in Psychological Science, 23(6), 466470. DOI: 10.1177/0963721414550706
  74. 74Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The Relation Between Self-Beliefs and Academic Achievement: A Meta-Analytic Review. Educational Psychologist, 39(2), 111133. DOI: 10.1207/s15326985ep3902_3
  75. 75Van den Driessche, C., Chevrier, F., Cleeremans, A., & Sackur, J. (2019). Lower Attentional Skills predict increased exploratory foraging patterns. Scientific Reports, 9(1), 10948. DOI: 10.1038/s41598-019-46761-0
  76. 76Van Dijk, M., & Van Geert, P. (2014). The nature and meaning of intraindividual variability in development in the early life span. In Handbook of intraindividual variability across the life span (pp. 3758). Routledge.
  77. 77van Geert, P. (1991). A dynamic systems model of cognitive and language growth. Psychological Review, 98(1), 353. DOI: 10.1037/0033-295X.98.1.3
  78. 78Waschke, L., Kloosterman, N. A., Obleser, J., & Garrett, D. D. (2021). Behavior needs neural variability. Neuron, 109(5), 751766. DOI: 10.1016/j.neuron.2021.01.023
  79. 79White, S. L. J., & Szűcs, D. (2012). Representational change and strategy use in children’s number line estimation during the first years of primary school. Behavioral and Brain Functions: BBF, 8, 1. DOI: 10.1186/1744-9081-8-1
  80. 80Wiker, T., Norbom, L. B., Beck, D., Agartz, I., Andreassen, O. A., Alnæs, D., Dahl, A., Eilertsen, E. M., Moberget, T., Ystrøm, E., Westlye, L. T., Lebel, C., Huster, R. J., & Tamnes, C. K. (2023). Reaction Time Variability in Children Is Specifically Associated With Attention Problems and Regional White Matter Microstructure. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 8(8), 832840. DOI: 10.1016/j.bpsc.2023.03.010
  81. 81Williams, D. R., Mulder, J., Rouder, J. N., & Rast, P. (2021). Beneath the surface: Unearthing within-person variability and mean relations with Bayesian mixed models. Psychological Methods, 26(1), 7489. DOI: 10.1037/met0000270
  82. 82Wu, H. G., Miyamoto, Y. R., Gonzalez Castro, L. N., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312321. DOI: 10.1038/nn.3616
DOI: https://doi.org/10.5334/joc.371 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jan 16, 2024
Accepted on: May 6, 2024
Published on: May 21, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Nicholas Judd, Michael Aristodemou, Torkel Klingberg, Rogier Kievit, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.