References
- Arciuli, J. (2018). Reading as Statistical Learning. Language, Speech, and Hearing Services in Schools, 49(3S), 634–643. DOI: 10.1044/2018_LSHSS-STLT1-17-0135
- Arciuli, J., & Conway, C. M. (2018). The Promise—And Challenge—Of Statistical Learning for Elucidating Atypical Language Development. Current Directions in Psychological Science, 27(6), 492–500. DOI: 10.1177/0963721418779977
- Arciuli, J., & Simpson, I. C. (2011). Statistical learning in typically developing children: The role of age and speed of stimulus presentation. Developmental science, 14(3), 464–473. DOI: 10.1111/j.1467-7687.2009.00937
- Arciuli, J., & Simpson, I. C. (2012). Statistical Learning Is Related to Reading Ability in Children and Adults: Cognitive Science. Cognitive Science, 36(2), 286–304. DOI: 10.1111/j.1551-6709.2011.01200.x
- Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge University Press. DOI: 10.1017/CBO9780511801686
- Bar, M. (2009). Predictions: A universal principle in the operation of the human brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1181–1182. DOI: 10.1098/rstb.2008.0321
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). DOI: 10.18637/jss.v067.i01
- Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62–78. DOI: 10.1016/j.jml.2015.04.004
- Berry, D. C., & Dienes, Z. (1993). Implicit learning: theoretical and empirical issues. Hove, UK: Lawrence Erlbaum.
- Blanca, M. J., Arnau, J., López-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and Kurtosis in Real Data Samples. Methodology, 9(2), 78–84. DOI: 10.1027/1614-2241/a000057
- Chang, F., Dell, G. S., & Bock, K. (2006). Becoming syntactic. Psychological Review, 113(2), 234–272. DOI: 10.1037/0033-295X.113.2.234
- Christiansen, M. H. (2019). Implicit Statistical Learning: A Tale of Two Literatures. Topics in Cognitive Science, 11(3), 468–481. DOI: 10.1111/tops.12332
- DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117–1121. DOI: 10.1038/nn1504
- de Marneffe, M.-C., Manning, C. D., Nivre, J., & Zeman, D. (2021). Universal Dependencies. Computational Linguistics, 1–54. DOI: 10.1162/coli_a_00402
- Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 641–655. DOI: 10.1016/S0022-5371(81)90220-6
- Fairs, A., & Strijkers, K. (2021). Can we use the internet to study speech production? Yes we can! Evidence contrasting online versus laboratory naming latencies and errors. PLoS ONE, 16(10),
e0258908 . DOI: 10.1371/journal.pone.0258908 - Federmeier, K. D., & Kutas, M. (1999). A Rose by Any Other Name: Long-Term Memory Structure and Sentence Processing. Journal of Memory and Language, 41(4), 469–495. DOI: 10.1006/jmla.1999.2660
- Ferreira, F., & Clifton, C. (1986). The independence of syntactic processing. Journal of Memory and Language, 25(3), 348–368. DOI: 10.1016/0749-596X(86)90006-9
- Finger, H., Goeke, C., Diekamp, D., Standvoß, K., & König, P. (2017). LabVanced: A Unified JavaScript Framework for Online Studies. Science, 349(6251), 1–3. DOI: 10.1016/0749-596X(86)90006-9
- Fiser, J., & Aslin, R. N. (2001). Unsupervised Statistical Learning of Higher-Order Spatial Structures from Visual Scenes. Psychological Science, 12(6), 499–504. DOI: 10.1111/1467-9280.00392
- Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125. DOI: 10.1016/j.tics.2014.12.010
- Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired Statistical Learning in Developmental Dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934–945. DOI: 10.1044/2015_JSLHR-L-14-0324
- Gavard, E., & Ziegler, J. C. (2022). The Effects of Semantic and Syntactic Prediction on Reading Aloud. Experimental Psychology, 69(6), 308–319. DOI: 10.1027/1618-3169/a000568
- Grasso, C. L., Ziegler, J. C., Coull, J. T., & Montant, M. (2022). Embodie d time: Effect of reading expertise on the spatial representation of past and future. PLoS ONE, 17(10),
e0276273 . DOI: 10.1371/journal.pone.0276273 - Günther, F., Rinaldi, L., & Marelli, M. (2019). Vector-space models of semantic representation from a cognitive perspective: A discussion of common misconceptions. Perspectives on Psychological Science, 14(6), 1006–1033. DOI: 10.1177/1745691619861372
- Haebig, E., Saffran, J. R., & Ellis Weismer, S. (2017). Statistical word learning in children with autism spectrum disorder and specific language impairment. Journal of Child Psychology and Psychiatry, 58(11), 1251–1263. DOI: 10.1111/jcpp.12734
- Hoaglin, D. C., Iglewicz, B., & Tukey, J. W. (1986). Performance of Some Resistant Rules for Outlier Labeling. Journal of the American Statistical Association, 81(396), 991–999. DOI: 10.1080/01621459.1986.10478363
- Inácio, F., Faísca, L., Forkstam, C., Araújo, S., Bramão, I., Reis, A., & Petersson, K. M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1–14. DOI: 10.1007/s11881-018-0158-x
- Johnson, M. A., Turk-Browne, N. B., & Goldberg, A. E. (2013). Prediction plays a key role in language development as well as processing. Behavioral and Brain Sciences, 36(4), 360–361. DOI: 10.1017/S0140525X12002609
- Kidd, E. (2012). Implicit statistical learning is directly associated with the acquisition of syntax. Developmental Psychology, 48(1), 171–184. DOI: 10.1037/a0025405
- Kidd, E., & Arciuli, J. (2016). Individual Differences in Statistical Learning Predict Children’s Comprehension of Syntax. Child Development, 87(1), 184–193. DOI: 10.1111/cdev.12461
- Kolb, P. (2008). DISCO: A Multilingual Database of Distributionally Similar Words. Proceedings of KONVENS-2008, 156,
8 . - Kutas, M., & Federmeier, K. D. (2011). Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP). Annual Review of Psychology, 62(1), 621–647. DOI: 10.1146/annurev.psych.093008.131123
- Lüdtke, J., Froehlich, E., Jacobs, A. M., & Hutzler, F. (2019). The SLS-Berlin: Validation of a German Computer-Based Screening Test to Measure Reading Proficiency in Early and Late Adulthood. Frontiers in Psychology, 10,
1682 . DOI: 10.3389/fpsyg.2019.01682 - Lukasova, K., Silva, I. P., & Macedo, E. C. (2016). Impaired Oculomotor Behavior of Children with Developmental Dyslexia in Antisaccades and Predictive Saccades Tasks. Frontiers in Psychology,
7 . DOI: 10.3389/fpsyg.2016.00987 - Lupyan, G., & Clark, A. (2015). Words and the World: Predictive Coding and the Language-Perception-Cognition Interface. Current Directions in Psychological Science, 24(4), 279–284. DOI: 10.1177/0963721415570732
- Mani, N., & Huettig, F. (2012). Prediction during language processing is a piece of cake—But only for skilled producers. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 843–847. DOI: 10.1037/a0029284
- Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101–B111. DOI: 10.1016/S0010-0277(01)00157-3
- Misyak, J. B., & Christiansen, M. H. (2012). Statistical Learning and Language: An Individual Differences Study: Individual Differences in Statistical Learning. Language Learning, 62(1), 302–331. DOI: 10.1111/j.1467-9922.2010.00626.x
- Ni, W., Crain, S., & Shankweiler, D. (1996). Sidestepping garden paths: Assessing the contributions of syntax, semantics and plausibility in resolving ambiguities. Language & Cognitive Processes, 11(3), 283–334. DOI: 10.1080/016909696387196
- Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends in Neurosciences, 30(4), 135–141. DOI: 10.1016/j.tins.2007.02.003
- Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47(1), 117–127. DOI: 10.1016/j.cortex.2009.08.016
- Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. DOI: 10.1016/0010-0285(87)90002-8
- Oliveira, C. M., Hayiou-Thomas, M. E., & Henderson, L. M. (2023). The reliability of the serial reaction time task: meta-analysis of test–retest correlations. Royal Society Open Science, 10(7),
221542 . DOI: 10.1098/rsos.221542 - Ozernov-Palchik, O., Qi, Z., Beach, S. D., & Gabrieli, J. D. E. (2023). Intact procedural memory and impaired auditory statistical learning in adults with dyslexia. Neuropsychologia, 188,
108638 . DOI: 10.1016/j.neuropsychologia.2023.108638 - Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. DOI: 10.1016/j.tics.2006.03.006
- Perry, C., Evertz, R., Zorzi, M., & Ziegler, J. C. (2024). Understanding the complexity of computational models through optimization and sloppy parameter analyses: The case of the Connectionist Dual-Process Model. Journal of Memory and Language, 134,
104468 . DOI: 10.1016/j.jml.2023.104468 - Perry, C., Ziegler, J. C., & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model. Cognitive Psychology, 61(2), 106–151. DOI: 10.1111/cogs.12030
- Pickering, M. J., & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychological Bulletin, 144(10), 1002–1044. DOI: 10.1037/bul0000158
- Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329–347. DOI: 10.1017/S0140525X12001495
- Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding Normal and Impaired Word Reading: Computational Principles in Quasi-Regular Domains. Psychological Review, 103(1),
56 . DOI: 10.1037/0033-295X.103.1.56 - Protopapas, A. (2007). Check Vocal: A program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859–862. DOI: 10.3758/BF03192979
- Przekoracka-Krawczyk, A., Brenk-Krakowska, A., Nawrot, P., Rusiak, P., & Naskrecki, R. (2017). Unstable Binocular Fixation Affects Reaction Times But Not Implicit Motor Learning in Dyslexia. Investigative Opthalmology & Visual Science, 58(14),
6470 . DOI: 10.1167/iovs.16-21305 - Qi, Z., Sanchez Araujo, Y., Georgan, W. C., Gabrieli, J. D. E., & Arciuli, J. (2019). Hearing Matters More Than Seeing: A Cross-Modality Study of Statistical Learning and Reading Ability. Scientific Studies of Reading, 23(1), 101–115. DOI: 10.1080/10888438.2018.1485680
- Ren, J., Wang, M., & Arciuli, J. (2023). A meta-analysis on the correlations between statistical learning, language, and reading outcomes. Developmental Psychology. DOI: 10.1037/dev0001577
- Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical Learning by 8-Month-Old Infants. Science, New Series, 274(5294), 1926–1928. DOI: 10.1126/science.274.5294.1926
- Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI Study of the Role of the Medial Temporal Lobe in Implicit and Explicit Sequence Learning. Neuron, 37(6), 1013–1025. DOI: 10.1016/S0896-6273(03)00123-5
- Schmalz, X., Moll, K., Mulatti, C., & Schulte-Körne, G. (2019). Is statistical learning ability related to reading ability, and if so, why? Scientific Studies of Reading, 23(1), 64–76. SMASH. DOI: 10.1080/10888438.2018.1482304
- Schwarb, H., & Schumacher, E. (2012). Generalized lessons about sequence learning from the study of the serial reaction time task. Advances in Cognitive Psychology, 8(2), 165–178. DOI: 10.5709/acp-0113-1
- Seidenberg, M. S., & MacDonald, M. C. (2018). The Impact of Language Experience on Language and Reading: A Statistical Learning Approach. Topics in Language Disorders, 38(1), 66–83. DOI: 10.1097/TLD.0000000000000144
- Shanks, D. R. (2005)
Implicit learning . In Lamberts, K. and Goldstone, R., (eds), Handbook of Cognition, pp. 202–220, Sage Publications. DOI: 10.4135/9781848608177.n8 - Siegelman, N., Bogaerts, L., Christiansen, M. H., & Frost, R. (2017). Towards a theory of individual differences in statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711),
20160059 . DOI: 10.1098/rstb.2016.0059 - Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177, 198–213. DOI: 10.1016/j.cognition.2018.04.011
- Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2), 418–432. DOI: 10.3758/s13428-016-0719-z
- Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105–120. DOI: 10.1016/j.jml.2015.02.001
- Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302–319. DOI: 10.1016/j.cognition.2013.02.013
- Snell, J., & Grainger, J. (2017). The sentence superiority effect revisited. Cognition, 168, 217–221. DOI: 10.1016/j.cognition.2017.07.003
- Song, S., Howard, J. H., & Howard, D. V. (2007). Implicit probabilistic sequence learning is independent of explicit awareness. Learning & Memory, 14(3), 167–176. DOI: 10.1101/lm.437407
- Spencer, M., Kaschak, M. P., Jones, J. L., & Lonigan, C. J. (2015). Statistical learning is related to early literacy-related skills. Reading and Writing, 28(4), 467–490. DOI: 10.1007/s11145-014-9533-0
- Staels, E., & Van Den Broeck, W. (2017). A specific implicit sequence learning deficit as an underlying cause of dyslexia? Investigating the role of attention in implicit learning tasks. Neuropsychology, 31(4), 371–382. DOI: 10.1037/neu0000348
- Staub, A. (2015). The Effect of Lexical Predictability on Eye Movements in Reading: Critical Review and Theoretical Interpretation: Predictability and Eye Movements. Language and Linguistics Compass, 9(8), 311–327. DOI: 10.1111/lnc3.12151
- Swingley, D. (2005). 11-month-olds’ knowledge of how familiar words sound 11-month-olds’ phonological knowledge. Developmental Science, 8(5), 432–443. DOI: 10.1111/j.1467-7687.2005.00432.x
- Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792–814. DOI: 10.1037/a0030801
- Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology, 39(4), 706–716. DOI: 10.1037/0012-1649.39.4.706
- Thiessen, E. D., & Saffran, J. R. (2007). Learning to Learn: Infants’ Acquisition of Stress-Based Strategies for Word Segmentation. Language Learning and Development, 3(1), 73–100. DOI: 10.1080/15475440709337001
- Thompson, S. P., & Newport, E. L. (2007). Statistical Learning of Syntax: The Role of Transitional Probability. Language Learning and Development, 3(1), 1–42. DOI: 10.1080/15475440709336999
- Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92(1–2), 231–270. DOI: 10.1016/j.cognition.2003.10.008
- Wimmer, H., & Mayringer, H. (2014). Salzburger Lese-Screening für die Schulstufen 2–9. Bern: Huber.
- Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. (2021). The contribution of individual differences in statistical learning to reading and spelling performance in children with and without dyslexia. Dyslexia, 27(2), 168–186. DOI: 10.1002/dys.1678
- Ziegler, J. C., Perry, C., & Zorzi, M. (2014). Modelling reading development through phonological decoding and self-teaching: Implications for dyslexia. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634),
20120397 . DOI: 10.1098/rstb.2012.0397
