Have a personal or library account? Click to login
What is a Rhythm for the Brain? The Impact of Contextual Temporal Variability on Auditory Perception Cover

What is a Rhythm for the Brain? The Impact of Contextual Temporal Variability on Auditory Perception

Open Access
|Jan 2024

References

  1. 1Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390398. DOI: 10.1016/j.tics.2012.05.003
  2. 2Aubanel, V., & Schwartz, J.-L. (2020). The role of isochrony in speech perception in noise. Scientific Reports, 10(1), 19580. DOI: 10.1038/s41598-020-76594-1
  3. 3Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using lme4 (arXiv:1406.5823). arXiv. DOI: https://doi.org/10.48550/arXiv.1406.5823; 10.18637/jss.v067.i01
  4. 4Bouwer, F. L., Fahrenfort, J. J., Millard, S. K., Kloosterman, N. A., & Slagter, H. A. (2022). A silent disco: Persistent entrainment of low-frequency neural oscillations underlies beat-based, but not pattern-based temporal expectations. bioRxiv, 202001.
  5. 5Bouwer, F. L., Honing, H., & Slagter, H. A. (2020). Beat-based and memory-based temporal expectations in rhythm: similar perceptual effects, different underlying mechanisms. Journal of Cognitive Neuroscience, 32(7), 12211241. DOI: 10.1162/jocn_a_01529
  6. 6Breska, A., & Deouell, L. Y. (2017). Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLOS Biology, 15(2), e2001665. DOI: 10.1371/journal.pbio.2001665
  7. 7Bueti, D., Bahrami, B., Walsh, V., & Rees, G. (2010). Encoding of temporal probabilities in the human brain. Journal of Neuroscience, 30(12), 43434352. DOI: 10.1523/JNEUROSCI.2254-09.2010
  8. 8Calderone, D. J., Lakatos, P., Butler, P. D., & Castellanos, F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends in cognitive sciences, 18(6), 300309. DOI: 10.1016/j.tics.2014.02.005
  9. 9Cannon, J. (2021). Expectancy-based rhythmic entrainment as continuous Bayesian inference. PLoS Computational Biology, 17(6), e1009025. DOI: 10.1371/journal.pcbi.1009025
  10. 10Cope, T. E., Grube, M., & Griffiths, T. D. (2012). Temporal predictions based on a gradual change in tempo. The Journal of the Acoustical Society of America, 131(5), 40134022. DOI: 10.1121/1.3699266
  11. 11Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal Expectation Enhances Contrast Sensitivity by Phase Entrainment of Low-Frequency Oscillations in Visual Cortex. Journal of Neuroscience, 33(9), 40024010. DOI: 10.1523/JNEUROSCI.4675-12.2013
  12. 12Cui, X., Stetson, C., Montague, P. R., & Eagleman, D. M. (2009). Ready… go: amplitude of the fMRI signal encodes expectation of cue arrival time. PLoS biology, 7(8), e1000167. DOI: 10.1371/journal.pbio.1000167
  13. 13Cummins, F. (2012). Oscillators and Syllables: A Cautionary Note. Frontiers in Psychology, 3. DOI: 10.3389/fpsyg.2012.00364
  14. 14Daume, J., Wang, P., Maye, A., Zhang, D., & Engel, A. K. (2021). Non-rhythmic temporal prediction involves phase resets of low-frequency delta oscillations. NeuroImage, 224, 117376. DOI: 10.1016/j.neuroimage.2020.117376
  15. 15Di Luca, M., & Rhodes, D. (2016). Optimal perceived timing: Integrating sensory information with dynamically updated expectations. Scientific reports, 6(1), 28563. DOI: 10.1038/srep28563
  16. 16Dilley, L. C., & Pitt, M. A. (2010). Altering context speech rate can cause words to appear or disappear. Psychological Science, 21(11), 16641670. DOI: 10.1177/0956797610384743
  17. 17Doelling, K. B., & Assaneo, M. F. (2021). Neural oscillations are a start toward understanding brain activity rather than the end. PLoS biology, 19(5), e3001234. DOI: 10.1371/journal.pbio.3001234
  18. 18Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences, 112(45), E6233E6242. DOI: 10.1073/pnas.1508431112
  19. 19Fiveash, A., Bella, S. D., Bigand, E., Gordon, R. L., & Tillmann, B. (2022). You got rhythm, or more: The multidimensionality of rhythmic abilities. Attention, Perception, & Psychophysics, 84(4), 13701392. DOI: 10.3758/s13414-022-02487-2
  20. 20Geiser, E., Ziegler, E., Jancke, L., & Meyer, M. (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93102. DOI: 10.1016/j.cortex.2007.09.010
  21. 21Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511517. DOI: 10.1038/nn.3063
  22. 22Grabenhorst, M., Maloney, L. T., Poeppel, D., & Michalareas, G. (2021). Two sources of uncertainty independently modulate temporal expectancy. Proceedings of the National Academy of Sciences, 118(16), Article 16. DOI: 10.1073/pnas.2019342118
  23. 23Grabenhorst, M., Michalareas, G., Maloney, L. T., & Poeppel, D. (2019). The anticipation of events in time. Nature Communications, 10(1), 5802. DOI: 10.1038/s41467-019-13849-0
  24. 24Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences, 109(49), 2009520100. DOI: 10.1073/pnas.1213390109
  25. 25Herbst, S. K., Fiedler, L., & Obleser, J. (2018). Tracking temporal hazard in the human electroencephalogram using a forward encoding model. eneuro, 5(2). DOI: 10.1523/ENEURO.0017-18.2018
  26. 26Herbst, S. K., & Obleser, J. (2017). Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response. Neuropsychologia, 101, 141152. DOI: 10.1016/j.neuropsychologia.2017.05.019
  27. 27Herbst, S. K., & Obleser, J. (2019). Implicit temporal predictability enhances pitch discrimination sensitivity and biases the phase of delta oscillations in auditory cortex. NeuroImage, 203, 116198. DOI: 10.1016/j.neuroimage.2019.116198
  28. 28Herbst, S. K., Stefanics, G., & Obleser, J. (2022). Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010. Cortex, 149, 226245. DOI: 10.1016/j.cortex.2022.02.001
  29. 29Herrmann, B., Henry, M. J., Haegens, S., & Obleser, J. (2016). Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. Neuroimage, 124, 487497. DOI: 10.1016/j.neuroimage.2015.09.019
  30. 30Jadoul, Y., Ravignani, A., Thompson, B., Filippi, P., & de Boer, B. (2016). Seeking Temporal Predictability in Speech: Comparing Statistical Approaches on 18 World Languages. Frontiers in Human Neuroscience, 10. https://www.frontiersin.org/articles/10.3389/fnhum.2016.00586. DOI: 10.3389/fnhum.2016.00586
  31. 31Jaramillo, S., & Zador, A. (2010). Auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Precedings, 11. DOI: 10.1038/npre.2010.5139.1
  32. 32Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323355. DOI: 10.1037/0033-295X.83.5.323
  33. 33Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459491. DOI: 10.1037/0033-295X.96.3.459
  34. 34Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28(18), 28672875. DOI: 10.1016/j.cub.2018.07.023
  35. 35Kösem, A., Gramfort, A., & Van Wassenhove, V. (2014). Encoding of event timing in the phase of neural oscillations. Neuroimage, 92, 274284. DOI: 10.1016/j.neuroimage.2014.02.010
  36. 36Kösem, A., & Van Wassenhove, V. (2017). Distinct contributions of low-and high-frequency neural oscillations to speech comprehension. Language, cognition and neuroscience, 32(5), 536544. DOI: 10.1080/23273798.2016.1238495
  37. 37Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact of sensory information on sensorimotor synchronization in musicians and non-musicians. Acta Psychologica, 133(1), 2837. DOI: 10.1016/j.actpsy.2009.08.003
  38. 38Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110113. DOI: 10.1126/science.1154735
  39. 39Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119159. DOI: 10.1037/0033-295X.106.1.119
  40. 40Lawrance, E. L. A., Harper, N. S., Cooke, J. E., & Schnupp, J. W. H. (2014). Temporal predictability enhances auditory detection. The Journal of the Acoustical Society of America, 135(6), EL357EL363. DOI: 10.1121/1.4879667
  41. 41Los, S. A., Kruijne, W., & Meeter, M. (2017). Hazard versus history: Temporal preparation is driven by past experience. Journal of Experimental Psychology: Human Perception and Performance, 43(1), 7888. DOI: 10.1037/xhp0000279
  42. 42Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization (No. 8). Oxford University Press on Demand.
  43. 43Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 14941502. DOI: 10.3758/s13428-016-0809-y
  44. 44Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods, 164(1), 177190. DOI: 10.1016/j.jneumeth.2007.03.024
  45. 45McPherson, M. J., Grace, R. C., & McDermott, J. H. (2022). Harmonicity aids hearing in noise. Attention, Perception, & Psychophysics, 84(3), 10161042. DOI: 10.3758/s13414-021-02376-0
  46. 46Meyer, M., Keller, M., & Giroud, N. (2018). Suprasegmental speech prosody and the human brain. The Oxford handbook of voice perception, 143165. DOI: 10.1093/oxfordhb/9780198743187.013.7
  47. 47Morillon, B., Schroeder, C. E., Wyart, V., & Arnal, L. H. (2016). Temporal Prediction in lieu of Periodic Stimulation. Journal of Neuroscience, 36(8), 23422347. DOI: 10.1523/JNEUROSCI.0836-15.2016
  48. 48Nobre, A. C., Coull, J. T., Frith, C. D., & Mesulam, M. M. (1999). Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience, 2(1), 1112. DOI: 10.1038/4513
  49. 49Nobre, A. C., Rohenkohl, G., & Stokes, M. G. (2012). Nervous anticipation: Top-down biasing across space and time. In Cognitive neuroscience of attention, 2nd ed (pp. 159186). The Guilford Press.
  50. 50Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 19(1), 3448. DOI: 10.1038/nrn.2017.141
  51. 51Nolan, F., & Jeon, H.-S. (2014). Speech rhythm: A metaphor? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130396. DOI: 10.1098/rstb.2013.0396
  52. 52Obleser, J., Henry, M. J., & Lakatos, P. (2017). What do we talk about when we talk about rhythm? PLOS Biology, 15(9), e2002794. DOI: 10.1371/journal.pbio.2002794
  53. 53Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in psychology, 3, 320. DOI: 10.3389/fpsyg.2012.00320
  54. 54Potter, D. D., Fenwick, M., Abecasis, D., & Brochard, R. (2009). Perceiving rhythm where none exists: Event-related potential (ERP) correlates of subjective accenting. Cortex, 45(1), 103109. DOI: 10.1016/j.cortex.2008.01.004
  55. 55Repp, B. H. (2010). Sensorimotor synchronization and perception of timing: Effects of music training and task experience. Human Movement Science, 29(2), 200213. DOI: 10.1016/j.humov.2009.08.002
  56. 56Rimmele, J., Jolsvai, H., & Sussman, E. (2011). Auditory Target Detection Is Affected by Implicit Temporal and Spatial Expectations. Journal of Cognitive Neuroscience, 23(5), 11361147. DOI: 10.1162/jocn.2010.21437
  57. 57Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 918. DOI: 10.1016/j.tins.2008.09.012
  58. 58Singh, N. C., & Theunissen, F. E. (2003). Modulation spectra of natural sounds and ethological theories of auditory processing. The Journal of the Acoustical Society of America, 114(6), 33943411. DOI: 10.1121/1.1624067
  59. 59Ten Oever, S., Schroeder, C. E., Poeppel, D., van Atteveldt, N., Mehta, A. D., Mégevand, P., Groppe, D. M., & Zion-Golumbic, E. (2017). Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli. Journal of Neuroscience, 37(19), 49034912. DOI: 10.1523/JNEUROSCI.3658-16.2017
  60. 60Ten Oever, S., Schroeder, C. E., Poeppel, D., van Atteveldt, N., & Zion-Golumbic, E. (2014). Rhythmicity and cross-modal temporal cues facilitate detection. Neuropsychologia, 63, 4350. DOI: 10.1016/j.neuropsychologia.2014.08.008
  61. 61Ten Oever, S., & Martin, A. E. (2021). An oscillating computational model can track pseudo-rhythmic speech by using linguistic predictions. Elife, 10, e68066. DOI: 10.7554/eLife.68066
  62. 62Tillmann, B. (2012). Music and Language Perception: Expectations, Structural Integration, and Cognitive Sequencing. Topics in Cognitive Science, 4(4), 568584. DOI: 10.1111/j.1756-8765.2012.01209.x
  63. 63Varnet, L., Ortiz-Barajas, M. C., Erra, R. G., Gervain, J., & Lorenzi, C. (2017). A cross-linguistic study of speech modulation spectra. The Journal of the Acoustical Society of America, 142(4), 19761989. DOI: 10.1121/1.5006179
  64. 64Wada, Y., Kitagawa, N., & Noguchi, K. (2003). Audio–visual integration in temporal perception. International journal of psychophysiology, 50(1–2), 117124. DOI: 10.1016/S0167-8760(03)00128-4
  65. 65Welch, R. B., DutionHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Perception & psychophysics, 39, 294300. DOI: 10.3758/BF03204939
  66. 66Wilsch, A., Henry, M. J., Herrmann, B., Maess, B., & Obleser, J. (2015). Slow-delta phase concentration marks improved temporal expectations based on the passage of time. Psychophysiology, 52(7), 910918. DOI: 10.1111/psyp.12413
  67. 67Wilsch, A., Mercier, M. R., Obleser, J., Schroeder, C. E., & Haegens, S. (2020). Spatial attention and temporal expectation exert differential effects on visual and auditory discrimination. Journal of Cognitive Neuroscience, 32(8), 15621576. DOI: 10.1162/jocn_a_01567
  68. 68Zalta, A., Petkoski, S., & Morillon, B. (2020). Natural rhythms of periodic temporal attention. Nature communications, 11(1), 1051. DOI: 10.1038/s41467-020-14888-8
  69. 69Zoefel, B., & Kösem, A. (2022). Neural Dynamics: Speech is Special. Psyarxiv.
DOI: https://doi.org/10.5334/joc.344 | Journal eISSN: 2514-4820
Language: English
Submitted on: Jun 8, 2023
Accepted on: Jan 2, 2024
Published on: Jan 17, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Pierre Bonnet, Mathilde Bonnefond, Anne Kösem, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.