References
- 1Arnal, L. H., & Giraud, A.-L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390–398. DOI: 10.1016/j.tics.2012.05.003
- 2Aubanel, V., & Schwartz, J.-L. (2020). The role of isochrony in speech perception in noise. Scientific Reports, 10(1), 19580. DOI: 10.1038/s41598-020-76594-1
- 3Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using lme4 (arXiv:1406.5823). arXiv. DOI: https://doi.org/10.48550/arXiv.1406.5823; 10.18637/jss.v067.i01
- 4Bouwer, F. L., Fahrenfort, J. J., Millard, S. K., Kloosterman, N. A., & Slagter, H. A. (2022). A silent disco: Persistent entrainment of low-frequency neural oscillations underlies beat-based, but not pattern-based temporal expectations. bioRxiv, 2020–01.
- 5Bouwer, F. L., Honing, H., & Slagter, H. A. (2020). Beat-based and memory-based temporal expectations in rhythm: similar perceptual effects, different underlying mechanisms. Journal of Cognitive Neuroscience, 32(7), 1221–1241. DOI: 10.1162/jocn_a_01529
- 6Breska, A., & Deouell, L. Y. (2017). Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLOS Biology, 15(2),
e2001665 . DOI: 10.1371/journal.pbio.2001665 - 7Bueti, D., Bahrami, B., Walsh, V., & Rees, G. (2010). Encoding of temporal probabilities in the human brain. Journal of Neuroscience, 30(12), 4343–4352. DOI: 10.1523/JNEUROSCI.2254-09.2010
- 8Calderone, D. J., Lakatos, P., Butler, P. D., & Castellanos, F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends in cognitive sciences, 18(6), 300–309. DOI: 10.1016/j.tics.2014.02.005
- 9Cannon, J. (2021). Expectancy-based rhythmic entrainment as continuous Bayesian inference. PLoS Computational Biology, 17(6),
e1009025 . DOI: 10.1371/journal.pcbi.1009025 - 10Cope, T. E., Grube, M., & Griffiths, T. D. (2012). Temporal predictions based on a gradual change in tempo. The Journal of the Acoustical Society of America, 131(5), 4013–4022. DOI: 10.1121/1.3699266
- 11Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal Expectation Enhances Contrast Sensitivity by Phase Entrainment of Low-Frequency Oscillations in Visual Cortex. Journal of Neuroscience, 33(9), 4002–4010. DOI: 10.1523/JNEUROSCI.4675-12.2013
- 12Cui, X., Stetson, C., Montague, P. R., & Eagleman, D. M. (2009). Ready… go: amplitude of the fMRI signal encodes expectation of cue arrival time. PLoS biology, 7(8),
e1000167 . DOI: 10.1371/journal.pbio.1000167 - 13Cummins, F. (2012). Oscillators and Syllables: A Cautionary Note. Frontiers in Psychology, 3. DOI: 10.3389/fpsyg.2012.00364
- 14Daume, J., Wang, P., Maye, A., Zhang, D., & Engel, A. K. (2021). Non-rhythmic temporal prediction involves phase resets of low-frequency delta oscillations. NeuroImage, 224, 117376. DOI: 10.1016/j.neuroimage.2020.117376
- 15Di Luca, M., & Rhodes, D. (2016). Optimal perceived timing: Integrating sensory information with dynamically updated expectations. Scientific reports, 6(1), 28563. DOI: 10.1038/srep28563
- 16Dilley, L. C., & Pitt, M. A. (2010). Altering context speech rate can cause words to appear or disappear. Psychological Science, 21(11), 1664–1670. DOI: 10.1177/0956797610384743
- 17Doelling, K. B., & Assaneo, M. F. (2021). Neural oscillations are a start toward understanding brain activity rather than the end. PLoS biology, 19(5),
e3001234 . DOI: 10.1371/journal.pbio.3001234 - 18Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences, 112(45), E6233–E6242. DOI: 10.1073/pnas.1508431112
- 19Fiveash, A., Bella, S. D., Bigand, E., Gordon, R. L., & Tillmann, B. (2022). You got rhythm, or more: The multidimensionality of rhythmic abilities. Attention, Perception, & Psychophysics, 84(4), 1370–1392. DOI: 10.3758/s13414-022-02487-2
- 20Geiser, E., Ziegler, E., Jancke, L., & Meyer, M. (2009). Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 45(1), 93–102. DOI: 10.1016/j.cortex.2007.09.010
- 21Giraud, A.-L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517. DOI: 10.1038/nn.3063
- 22Grabenhorst, M., Maloney, L. T., Poeppel, D., & Michalareas, G. (2021). Two sources of uncertainty independently modulate temporal expectancy. Proceedings of the National Academy of Sciences, 118(16), Article 16. DOI: 10.1073/pnas.2019342118
- 23Grabenhorst, M., Michalareas, G., Maloney, L. T., & Poeppel, D. (2019). The anticipation of events in time. Nature Communications, 10(1), 5802. DOI: 10.1038/s41467-019-13849-0
- 24Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences, 109(49), 20095–20100. DOI: 10.1073/pnas.1213390109
- 25Herbst, S. K., Fiedler, L., & Obleser, J. (2018). Tracking temporal hazard in the human electroencephalogram using a forward encoding model. eneuro, 5(2). DOI: 10.1523/ENEURO.0017-18.2018
- 26Herbst, S. K., & Obleser, J. (2017). Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response. Neuropsychologia, 101, 141–152. DOI: 10.1016/j.neuropsychologia.2017.05.019
- 27Herbst, S. K., & Obleser, J. (2019). Implicit temporal predictability enhances pitch discrimination sensitivity and biases the phase of delta oscillations in auditory cortex. NeuroImage, 203, 116198. DOI: 10.1016/j.neuroimage.2019.116198
- 28Herbst, S. K., Stefanics, G., & Obleser, J. (2022). Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010. Cortex, 149, 226–245. DOI: 10.1016/j.cortex.2022.02.001
- 29Herrmann, B., Henry, M. J., Haegens, S., & Obleser, J. (2016). Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. Neuroimage, 124, 487–497. DOI: 10.1016/j.neuroimage.2015.09.019
- 30Jadoul, Y., Ravignani, A., Thompson, B., Filippi, P., & de Boer, B. (2016). Seeking Temporal Predictability in Speech: Comparing Statistical Approaches on 18 World Languages. Frontiers in Human Neuroscience, 10.
https://www.frontiersin.org/articles/10.3389/fnhum.2016.00586 . DOI: 10.3389/fnhum.2016.00586 - 31Jaramillo, S., & Zador, A. (2010). Auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Precedings, 1–1. DOI: 10.1038/npre.2010.5139.1
- 32Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323–355. DOI: 10.1037/0033-295X.83.5.323
- 33Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459–491. DOI: 10.1037/0033-295X.96.3.459
- 34Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. (2018). Neural entrainment determines the words we hear. Current Biology, 28(18), 2867–2875. DOI: 10.1016/j.cub.2018.07.023
- 35Kösem, A., Gramfort, A., & Van Wassenhove, V. (2014). Encoding of event timing in the phase of neural oscillations. Neuroimage, 92, 274–284. DOI: 10.1016/j.neuroimage.2014.02.010
- 36Kösem, A., & Van Wassenhove, V. (2017). Distinct contributions of low-and high-frequency neural oscillations to speech comprehension. Language, cognition and neuroscience, 32(5), 536–544. DOI: 10.1080/23273798.2016.1238495
- 37Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact of sensory information on sensorimotor synchronization in musicians and non-musicians. Acta Psychologica, 133(1), 28–37. DOI: 10.1016/j.actpsy.2009.08.003
- 38Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110–113. DOI: 10.1126/science.1154735
- 39Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119–159. DOI: 10.1037/0033-295X.106.1.119
- 40Lawrance, E. L. A., Harper, N. S., Cooke, J. E., & Schnupp, J. W. H. (2014). Temporal predictability enhances auditory detection. The Journal of the Acoustical Society of America, 135(6), EL357–EL363. DOI: 10.1121/1.4879667
- 41Los, S. A., Kruijne, W., & Meeter, M. (2017). Hazard versus history: Temporal preparation is driven by past experience. Journal of Experimental Psychology: Human Perception and Performance, 43(1), 78–88. DOI: 10.1037/xhp0000279
- 42Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization (No. 8). Oxford University Press on Demand.
- 43Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. DOI: 10.3758/s13428-016-0809-y
- 44Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods, 164(1), 177–190. DOI: 10.1016/j.jneumeth.2007.03.024
- 45McPherson, M. J., Grace, R. C., & McDermott, J. H. (2022). Harmonicity aids hearing in noise. Attention, Perception, & Psychophysics, 84(3), 1016–1042. DOI: 10.3758/s13414-021-02376-0
- 46Meyer, M., Keller, M., & Giroud, N. (2018). Suprasegmental speech prosody and the human brain. The Oxford handbook of voice perception, 143–165. DOI: 10.1093/oxfordhb/9780198743187.013.7
- 47Morillon, B., Schroeder, C. E., Wyart, V., & Arnal, L. H. (2016). Temporal Prediction in lieu of Periodic Stimulation. Journal of Neuroscience, 36(8), 2342–2347. DOI: 10.1523/JNEUROSCI.0836-15.2016
- 48Nobre, A. C., Coull, J. T., Frith, C. D., & Mesulam, M. M. (1999). Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention. Nature Neuroscience, 2(1), 11–12. DOI: 10.1038/4513
- 49Nobre, A. C., Rohenkohl, G., & Stokes, M. G. (2012).
Nervous anticipation: Top-down biasing across space and time . In Cognitive neuroscience of attention, 2nd ed (pp. 159–186). The Guilford Press. - 50Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: temporal structure in attention. Nature Reviews Neuroscience, 19(1), 34–48. DOI: 10.1038/nrn.2017.141
- 51Nolan, F., & Jeon, H.-S. (2014). Speech rhythm: A metaphor? Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1658), 20130396. DOI: 10.1098/rstb.2013.0396
- 52Obleser, J., Henry, M. J., & Lakatos, P. (2017). What do we talk about when we talk about rhythm? PLOS Biology, 15(9),
e2002794 . DOI: 10.1371/journal.pbio.2002794 - 53Peelle, J. E., & Davis, M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in psychology, 3, 320. DOI: 10.3389/fpsyg.2012.00320
- 54Potter, D. D., Fenwick, M., Abecasis, D., & Brochard, R. (2009). Perceiving rhythm where none exists: Event-related potential (ERP) correlates of subjective accenting. Cortex, 45(1), 103–109. DOI: 10.1016/j.cortex.2008.01.004
- 55Repp, B. H. (2010). Sensorimotor synchronization and perception of timing: Effects of music training and task experience. Human Movement Science, 29(2), 200–213. DOI: 10.1016/j.humov.2009.08.002
- 56Rimmele, J., Jolsvai, H., & Sussman, E. (2011). Auditory Target Detection Is Affected by Implicit Temporal and Spatial Expectations. Journal of Cognitive Neuroscience, 23(5), 1136–1147. DOI: 10.1162/jocn.2010.21437
- 57Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18. DOI: 10.1016/j.tins.2008.09.012
- 58Singh, N. C., & Theunissen, F. E. (2003). Modulation spectra of natural sounds and ethological theories of auditory processing. The Journal of the Acoustical Society of America, 114(6), 3394–3411. DOI: 10.1121/1.1624067
- 59Ten Oever, S., Schroeder, C. E., Poeppel, D., van Atteveldt, N., Mehta, A. D., Mégevand, P., Groppe, D. M., & Zion-Golumbic, E. (2017). Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli. Journal of Neuroscience, 37(19), 4903–4912. DOI: 10.1523/JNEUROSCI.3658-16.2017
- 60Ten Oever, S., Schroeder, C. E., Poeppel, D., van Atteveldt, N., & Zion-Golumbic, E. (2014). Rhythmicity and cross-modal temporal cues facilitate detection. Neuropsychologia, 63, 43–50. DOI: 10.1016/j.neuropsychologia.2014.08.008
- 61Ten Oever, S., & Martin, A. E. (2021). An oscillating computational model can track pseudo-rhythmic speech by using linguistic predictions. Elife, 10,
e68066 . DOI: 10.7554/eLife.68066 - 62Tillmann, B. (2012). Music and Language Perception: Expectations, Structural Integration, and Cognitive Sequencing. Topics in Cognitive Science, 4(4), 568–584. DOI: 10.1111/j.1756-8765.2012.01209.x
- 63Varnet, L., Ortiz-Barajas, M. C., Erra, R. G., Gervain, J., & Lorenzi, C. (2017). A cross-linguistic study of speech modulation spectra. The Journal of the Acoustical Society of America, 142(4), 1976–1989. DOI: 10.1121/1.5006179
- 64Wada, Y., Kitagawa, N., & Noguchi, K. (2003). Audio–visual integration in temporal perception. International journal of psychophysiology, 50(1–2), 117–124. DOI: 10.1016/S0167-8760(03)00128-4
- 65Welch, R. B., DutionHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Perception & psychophysics, 39, 294–300. DOI: 10.3758/BF03204939
- 66Wilsch, A., Henry, M. J., Herrmann, B., Maess, B., & Obleser, J. (2015). Slow-delta phase concentration marks improved temporal expectations based on the passage of time. Psychophysiology, 52(7), 910–918. DOI: 10.1111/psyp.12413
- 67Wilsch, A., Mercier, M. R., Obleser, J., Schroeder, C. E., & Haegens, S. (2020). Spatial attention and temporal expectation exert differential effects on visual and auditory discrimination. Journal of Cognitive Neuroscience, 32(8), 1562–1576. DOI: 10.1162/jocn_a_01567
- 68Zalta, A., Petkoski, S., & Morillon, B. (2020). Natural rhythms of periodic temporal attention. Nature communications, 11(1), 1051. DOI: 10.1038/s41467-020-14888-8
- 69Zoefel, B., & Kösem, A. (2022). Neural Dynamics: Speech is Special. Psyarxiv.
