References
- 1Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in cognitive sciences, 16(8), 437–443. DOI: 10.1016/j.tics.2012.06.010
- 2Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940. DOI: 10.1152/jn.1998.80.6.2918
- 3Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. DOI: 10.1146/annurev.ne.18.030195.001205
- 4Duncan, J. (1985). Two techniques for investigating perception without awareness. Perception & Psychophysics, 38, 296–298. DOI: 10.3758/BF03207158
- 5Duncan, J. (2006). EPS Mid-Career Award 2004: brain mechanisms of attention. Quarterly Journal of Experimental Psychology, 59, 2–27. DOI: 10.1080/174702105002606
- 6Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological review, 96,
433 . DOI: 10.1037/0033-295X.96.3.433 - 7Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234. DOI: 10.1016/0013-4694(96)95711-9
- 8Eimer, M. (2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18, 526–535. DOI: 10.1016/j.tics.2014.05.005
- 9Eimer, M. (2015). EPS mid-career award 2014: the control of attention in visual search-cognitive and neural mechanisms. The Quarterly Journal of Experimental Psychology, 68, 2437–2463. DOI: 10.1080/17470218.2015.1065283
- 10Eimer, M., & Grubert, A. (2014). Spatial attention can be allocated rapidly and in parallel to new visual objects. Current Biology, 24, 193–198. DOI: 10.1016/j.cub.2013.12.001
- 11Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavioural Research Methods, 39, 175–191. DOI: 10.3758/BF03193146
- 12Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience,
267 . DOI: 10.3389/fnins.2013.00267 - 13Grubert, A., & Eimer, M. (2015). Rapid parallel attentional target selection in single-colour and multiple-colour visual search. Journal of Experimental Psychology: Human Perception and Performance, 41, 86–101. DOI: 10.1037/xhp0000019
- 14Grubert, A., & Eimer, M. (2018). The time course of target template activation processes during preparation for visual search. Journal of Neuroscience, 38, 9527–9539. DOI: 10.1523/JNEUROSCI.0409-18.2018
- 15Grubert, A., & Eimer, M. (2020). Preparatory template activation during search for alternating targets. Journal of Cognitive Neuroscience, 32, 1525–1535. DOI: 10.1162/jocn_a_01565
- 16Grubert, A., Fahrenfort, J., Olivers, C. N. A., & Eimer, M. (2017). Rapid top-down control over template-guided attention shifts to multiple objects. NeuroImage, 146, 843–858. DOI: 10.1016/j.neuroimage.2016.08.039
- 17Jenkins, M., Grubert, A., & Eimer, M. (2016). Rapid parallel attentional selection can be controlled by shape and alphanumerical category. Journal of Cognitive Neuroscience, 28, 1672–1687. DOI: 10.1162/jocn_a_00995
- 18Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014. DOI: 10.1037/0096-1523.20.5.1000
- 19Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164, 177–190. DOI: 10.1016/j.jneumeth.2007.03.024
- 20Olivers, C. N., & Meeter, M. (2006). On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven. Visual Cognition, 13, 1–28. DOI: 10.1080/13506280500308101
- 21Olivers, C. N., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15, 327–334. DOI: 10.1016/j.tics.2011.05.004
- 22Ort, E., & Olivers, C. N. L. (2020) The capacity of multiple-target search. Visual Cognition, 28, 5–8, 330–355. DOI: 10.1080/13506285.2020.1772430
- 23Peirce, J. W, Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51, 195–203. DOI: 10.3758/s13428-018-01193-y
- 24Rosner, B. (1983). Percentage Points for a Generalized ESD Many-outlier Procedure. Technometrics, 25, 165–172. DOI: 10.2307/1268549
- 25Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. Psychophysiology, 56,
e13335 . DOI: 10.1111/psyp.13335 - 26Wolfe, J. M. (2007).
Guided Search 4.0: Current progress with a model of visual search . In W. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York, NY: Oxford University Press. DOI: 10.1093/acprof:oso/9780195189193.003.0008 - 27Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23, 698–703. DOI: 10.1177/0956797612443968
- 28Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28, 1060–1092. DOI: 10.3758/s13423-020-01859-9
- 29Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869. DOI: 10.1038/23698
