References
- 1Ahissar, M., & Hochstein, S. (2000). The spread of attention and learning in feature search: Effects of target distribution and task difficulty. Vision Research, 40(10–12), 1349–1364. DOI: 10.1016/S0042-6989(00)00002-X
- 2Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624. DOI: 10.1037/0033-295X.108.3.624
- 3Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. DOI: 10.1016/J.TICS.2011.12.010
- 4Chiu, Y. C., & Egner, T. (2016). Distractor-relevance determines whether task-switching enhances or impairs distractor memory. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 1–5. DOI: 10.1037/xhp0000181
- 5Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Academic Press. DOI: 10.4324/9780203771587
- 6Davis, H., Rosner, T. M., D’Angelo, M. C., MacLellan, E., & Milliken, B. (2020). Selective attention effects on recognition: The roles of list context and perceptual difficulty. Psychological Research, 84(5), 1249–1268. DOI: 10.1007/S00426-019-01153-X/TABLES/8
- 7Dubravac, M., & Meier, B. (2022). Cognitive load enhances memory selectivity. Quarterly Journal of Experimental Psychology. DOI: 10.1177/17470218221132846
- 8Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374–380. DOI: 10.1016/j.tics.2008.07.001
- 9Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 1784–1790. DOI: 10.1038/nn1594
- 10Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. DOI: 10.3758/BF03203267
- 11Goschke, T., & Dreisbach, G. (2008). Conflict-triggered goal shielding. Psychological Science, 19(1), 25–32. DOI: 10.1111/j.1467-9280.2008.02042.x
- 12Jiménez, L., Gallego, D., Agra, O., Lorda, M. J., & Méndez, C. (2022). Proportion of conflict, contingency learning, and recency effects in a Stroop task. Quarterly Journal of Experimental Psychology, 75(8), 1528–1540. DOI: 10.1177/17470218211056813
- 13Jiménez, L., Méndez, C., Agra, O., & Ortiz-Tudela, J. (2020). Increasing control improves further control, but it does not enhance memory for the targets in a face–word Stroop task. Memory and Cognition, 48(6), 994–1006. DOI: 10.3758/s13421-020-01028-2
- 14Krebs, R. M., Boehler, C. N., De Belder, M., & Egner, T. (2015). Neural conflict-control mechanisms improve memory for target stimuli. Cerebral Cortex, 25(3), 833–843. DOI: 10.1093/cercor/bht283
- 15LaPointe, M., Rosner, T., Ortiz-Tudela, J., Lorentz, L., & Milliken, B. (2022). The attentional boost effect and perceptual degradation: Assessing the influence of attention on recognition memory. Frontiers in Psychology, 13, 01–09. DOI: 10.3389/fpsyg.2022.1024498
- 16Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9(2), 75–82. DOI: 10.1016/j.tics.2004.12.004
- 17Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143–148. DOI: 10.1177/0963721410370295
- 18Lavie, N., Lin, Z., Zokaei, N., & Thoma, V. (2009). The role of perceptual load in object recognition. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1346. DOI: 10.1037/a0016454
- 19Los, S. A. (1996). On the origin of mixing costs: Exploring information processing in pure and mixed blocks of trials. Acta Psychologica, 94(2), 145–188. DOI: 10.1016/0001-6918(95)00050-X
- 20Los, S. A. (1999). Identifying stimuli of different perceptual categories in pure and mixed blocks of trials: Evidence for stimulus-driven switch costs. Acta Psychologica, 103(1–2), 173–205. DOI: 10.1016/S0001-6918(99)00031-1
- 21Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & Psychophysics, 49, 270–288. DOI: 10.3758/BF03214311
- 22Muhmenthaler, M. C., & Meier, B. (2019). Task switching hurts memory encoding. Experimental Psychology, 66(1), 58–67. DOI: 10.1027/1618-3169/a000431
- 23Muhmenthaler, M. C., & Meier, B. (2021a). Different impact of task switching and response-category conflict on subsequent memory. Psychological Research, 85(2), 679–696. DOI: 10.1007/s00426-019-01274-3
- 24Muhmenthaler, M. C., & Meier, B. (2021b). Response-category conflict improves target memory in a flanker paradigm. Memory, 1–8. DOI: 10.1080/09658211.2021.2012580
- 25Muhmenthaler, M. C., Dubravac, M., & Meier, B. (2023). How attention and knowledge modulate memory: The differential impact of cognitive conflicts on subsequent memory- A review of a decade of research. Frontiers in Psychology, 2, 1–17. DOI: 10.3389/fcogn.2023.1125700
- 26Mulligan, N. W., Spataro, P., & Picklesimer, M. (2014). The attentional boost effect with verbal materials. Journal of Experimental Psychology: Learning Memory and Cognition, 40(4), 1049–1063. DOI: 10.1037/A0036163
- 27Ptok, M. J., Hannah, K., & Watter, S. (2021). Memory effects of conflict and cognitive control are processing stage-specific: Evidence from pupillometry. Psychological Research, 85, 1029–1046. DOI: 10.1007/s00426-020-01295-3
- 28Ptok, M. J., Thomson, S. J., Humphreys, K. R., & Watter, S. (2019). Congruency encoding effects on recognition memory are processing stage specific. Frontiers in Psychology, 10, 858. DOI: 10.3389/fpsyg.2019.00858
- 29Richter, F. R., & Yeung, N. (2012). Memory and cognitive control in task switching. Psychological Science, 23(10), 1256–1263. DOI: 10.1177/0956797612444613
- 30Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207. DOI: 10.1037/0096-3445.124.2.207
- 31Rosner, T. M., D’Angelo, M. C., MacLellan, E., & Milliken, B. (2015). Selective attention and recognition: Effects of congruency on episodic learning. Psychological Research, 79(3), 411–424. DOI: 10.1007/s00426-014-0572-6
- 32Rosner, T. M., & Milliken, B. (2015). Congruency effects on recognition memory: A context effect. Canadian Journal of Experimental Psychology, 69(2), 206–212. DOI: 10.1037/cep0000049
- 33Sanders, A. F., & Lamers, J. M. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109, 41–56. DOI: 10.1016/S0001-6918(01)00048-8
- 34Swallow, K. M., & Jiang, Y. V. (2010). The attentional boost effect: Transient increases in attention to one task enhance performance in a second task. Cognition, 115(1), 118. DOI: 10.1016/J.COGNITION.2009.12.003
- 35Swallow, K. M., & Jiang, Y. V. (2013). Attentional load and attentional boost: A review of data and theory. Frontiers in Psychology, 4, 274. DOI: 10.3389/fpsyg.2013.00274
- 36Tulving, E. (1985). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26(1), 1. DOI: 10.1037/h0080017
- 37Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518. DOI: 10.1037/0033-295X.115.2.518
- 38Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13(6), 252–257. DOI: 10.1016/j.tics.2009.02.007
- 39Whitehead, P. S., Brewer, G. A., Patwary, N., & Blais, C. (2018). Contingency learning is reduced for high conflict stimuli. Acta Psychologica, 189, 12–18. DOI: 10.1016/j.actpsy.2016.09.002
- 40Wylie, G., & Allport, A. (2000). Task switching and the measurement of “switch costs”. Psychological Research, 63(3–4), 212–233. DOI: 10.1007/s004269900003
- 41Yeh, V. U., & Eriksen, C. W. (1984). Name codes and features in the discrimination of letter forms. Perception & Psychophysics, 36, 225–233. DOI: 10.3758/BF03206363
- 42Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46(3), 441–517. DOI: 10.1006/jmla.2002.2864
