References
- 1Avons, S., & Mason, A. (1999). Effects of visual similarity on serial report and item recognition. Quarterly Journal of Experimental Psychology: Section A, 52, 217–240. DOI: 10.1080/713755809
- 2Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. DOI: 10.1016/S1364-6613(00)01538-2
- 3Baddeley, A., & Hitch, G. (1974).
Working memory . In: Bower, G. H. (ed.), Recent advances in learning and motivation, 647–667. New York, NY: Academic Press. DOI: 10.1016/S0079-7421(08)60452-1 - 4Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83–100. DOI: 10.1037/0096-3445.133.1.83
- 5Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 175–192. DOI: 10.1037/a0022324
- 6Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138, 487–502. DOI: 10.1037/a0016797
- 7Chater, N., & Vitányi, P. (2003). Simplicity: a unifying principle in cognitive science. Trends in Cognitive Sciences, 7(1), 19–22. DOI: 10.1016/S1364-6613(02)00005-0
- 8Chekaf, M., Cowan, N., & Mathy, F. (2016). Chunk formation in immediate memory and how it relates to data compression. Cognition, 155, 96–107. DOI: 10.1016/j.cognition.2016.05.024
- 9Chekaf, M., Gauvrit, N., Guida, A., & Mathy, F. (in press). Compression in working memory and its relationship with fluid intelligence. Cognitive Science. DOI: 10.1111/cogs.12601
- 10Colom, R., Rebollo, I., Abad, F. J., & Shih, P. C. (2006). Complex span tasks, simple span tasks, and cognitive abilities: a reanalysis of key studies. Memory & Cognition, 34, 158–171. DOI: 10.3758/BF03193395
- 11Colom, R., Shih, P. C., Flores-Mendoza, C., & Quiroga, M. Á. (2006). The real relationship between short-term memory and working memory. Memory, 14, 804–813. DOI: 10.1080/09658210600680020
- 12Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183. DOI: 10.1016/S0160-2896(01)00096-4
- 13Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. DOI: 10.3758/BF03196772
- 14Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185. DOI: 10.1017/S0140525X01003922
- 15Cowan, N., Rouder, J. N., Blume, C. L., & Saults, J. S. (2012). Models of verbal working memory capacity: What does it take to make them work? Psychological Review, 119, 480–499. DOI: 10.1037/a0027791
- 16Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23. DOI: 10.1111/1467-8721.00160
- 17Farrell, S. (2012). Temporal clustering and sequencing in short-term memory and episodic memory. Psychological review, 119, 223–271. DOI: 10.1037/a0027371
- 18Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature, 407, 630–633. DOI: 10.1038/35036586
- 19Feldman, J. (2003). A catalog of Boolean concepts. Journal of Mathematical Psychology, 47, 75–89. DOI: 10.1016/S0022-2496(02)00025-1
- 20Gobet, F., Lane, P. C., Croker, S., Cheng, P. C.-H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243. DOI: 10.1016/S1364-6613(00)01662-4
- 21Hardman, K. O., & Cowan, N. (2015). Remembering complex objects in visual working memory: Do capacity limits restrict objects or features? Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 325. DOI: 10.1037/xlm0000031
- 22Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of experimental psychology: General, 133, 189–217. DOI: 10.1037/0096-3445.133.2.189
- 23Love, B. C., & Markman, A. B. (2003). The nonindependence of stimulus properties in human category learning. Memory & Cognition, 31, 790–799. DOI: 10.3758/BF03196117
- 24Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. DOI: 10.1038/36846
- 25Martínez, K., Burgaleta, M., Román, F. J., Escorial, S., Shih, P. C., Quiroga, M. Á., & Colom, R. (2011). Can fluid intelligence be reduced to ‘simple’ short-term storage? Intelligence, 39, 473–480. DOI: 10.1016/j.intell.2011.09.001
- 26Mathy, F., & Feldman, J. (2009). A rule-based presentation order facilitates category learning. Psychonomic Bulletin & Review, 16, 1050–1057. DOI: 10.3758/PBR.16.6.1050
- 27Mathy, F., & Feldman, J. (2012). What’s magic about magic numbers? Chunking and data compression in short-term memory. Cognition, 122, 346–362. DOI: 10.1016/j.cognition.2011.11.003
- 28Mathy, F., & Varré, J. S. (2013). Retention-error patterns in complex alphanumeric serial-recall tasks. Memory, 21, 945–968. DOI: 10.1080/09658211.2013.769607
- 29Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. DOI: 10.1037/h0043158
- 30Oberauer, K., & Eichenberger, S. (2013). Visual working memory declines when more features must be remembered for each object. Memory & Cognition, 41, 1212–1227. DOI: 10.3758/s13421-013-0333-6
- 31Portrat, S., Guida, A., Phénix, T., & Lemaire, B. (2016). Promoting the experimental dialogue between working memory and chunking: Behavioral data and simulation. Memory & cognition, 44, 420–434. DOI: 10.3758/s13421-015-0572-9
- 32Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: A matter of working memory consolidation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 417. DOI: 10.1037/a0034301
- 33Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic bulletin & review, 18(2), 324–330. DOI: 10.3758/s13423-011-0055-3
- 34Smyth, M. M., Hay, D. C., Hitch, G. J., & Horton, N. J. (2005). Serial position memory in the visual—spatial domain: Reconstructing sequences of unfamiliar faces. Quarterly Journal of Experimental Psychology: Section A, 58, 909–930. DOI: 10.1080/02724980443000412
- 35Unsworth, N., & Engle, R. W. (2006). Simple and complex memory spans and their relation to fluid abilities: Evidence from list-length effects. Journal of Memory and Language, 54(1), 68–80. DOI: 10.1016/j.jml.2005.06.003
- 36Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133, 1038–1066. DOI: 10.1037/0033-2909.133.6.1038
- 37Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64. DOI: 10.1037/0096-3445.131.1.48
