References
- Ackerman, P. L. (1992). Predicting individual differences in complex skill acquisition: dynamics of ability determinants. Journal of applied psychology, 77(5), 598. DOI: 10.1037/0021-9010.77.5.598
- Ackerman, P. L. (2007). New developments in understanding skilled performance. Current Directions in Psychological Science, 16(5), 235–239. DOI: 10.1111/j.1467-8721.2007.00511.x
- Albon, C. (2018).
Machine learning with python cookbook: Practical solutions from preprocessing to deep learning . “O’Reilly Media, Inc.” - Au, J., Buschkuehl, M., Duncan, G. J., & Jaeggi, S. M. (2016). There is no convincing evidence that working memory training is NOT effective: A reply to Melby-Lervåg and Hulme (2015). Psychonomic Bulletin & Review, 23(1), 331–337. DOI: 10.3758/s13423-015-0967-4
- Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of social and clinical psychology, 4(3), 359–373. DOI: 10.1521/jscp.1986.4.3.359
- Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: learning to learn and action video games. Annual review of neuroscience, 35, 391–416. DOI: 10.1146/annurev-neuro-060909-152832
- Berard, A. V., Cain, M. S., Watanabe, T., & Sasaki, Y. (2015). Frequent Video Game Players Resist Perceptual Interference. PLOS ONE, 10(3),
e0120011 . DOI: 10.1371/journal.pone.0120011 - Berrar, D. (2018). Cross-Validation. DOI: 10.1016/B978-0-12-809633-8.20349-X
- Bogg, T., & Lasecki, L. (2015). Reliable gains? Evidence for substantially underpowered designs in studies of working memory training transfer to fluid intelligence. Frontiers in psychology, 5, 1589. DOI: 10.3389/fpsyg.2014.01589
- Borella, E., Carbone, E., Pastore, M., De Beni, R., & Carretti, B. (2017). Working memory training for healthy older adults: the role of individual characteristics in explaining short-and long-term gains. Frontiers in human neuroscience, 11, 99. DOI: 10.3389/fnhum.2017.00099
- Broadbent, D. E., Cooper, P. F., FitzGerald, P., & Parkes, K. R. (1982). The Cognitive Failures Questionnaire (CFQ) and its correlates. British Journal of Clinical Psychology, 21(1), 1–16. DOI: 10.1111/j.2044-8260.1982.tb01421.x
- Bürki, C. N., Ludwig, C., Chicherio, C., & de Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821–835. DOI: 10.1007/s00426-014-0559-3
- Cassilhas, R. C., Tufik, S., & de Mello, M. T. (2016). Physical exercise, neuroplasticity, spatial learning and memory. Cellular and Molecular Life Sciences, 73(5), 975–983. DOI: 10.1007/s00018-015-2102-0
- Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524–529. DOI: 10.1016/j.lindif.2009.06.004
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. DOI: 10.1613/jair.953
- Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in brain research, 169, 323–338. DOI: 10.1016/S0079-6123(07)00020-9
- Datu, J. A. D. (2021). Beyond passion and perseverance: Review and future research initiatives on the science of grit. Frontiers in Psychology, 11, 545526. DOI: 10.3389/fpsyg.2020.545526
- Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078. DOI: 10.1016/j.neuropsychologia.2006.02.006
- Denisko, D., & Hoffman, M. M. (2018). Classification and interaction in random forests. Proceedings of the National Academy of Sciences, 115(8), 1690–1692. DOI: 10.1073/pnas.1800256115
- Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135–168. DOI: 10.1146/annurev-psych-113011-143750
- Dong, Y., & Peng, C. Y. J. (2013). Principled missing data methods for researchers. SpringerPlus, 2(1), 1–17. DOI: 10.1186/2193-1801-2-222
- Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 1087–1101. DOI: 10.1037/0022-3514.92.6.1087
- Duckworth, A. L., & Quinn, P. D. (2009). Development and Validation of the Short Grit Scale (Grit–S). Journal of Personality Assessment, 91(2), 166–174. DOI: 10.1080/00223890802634290
- Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive functioning: moving from correlation to causation. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 377–386. DOI: 10.1002/wcs.1176
- Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. Philadelphia: Psychology Press.
- Dweck, C., & Molden, D. C. (2000). Self theories. Handbook of competence and motivation, 122–140. DOI: 10.1016/B978-012619070-0/50028-3
- Fellman, D., Jylkkä, J., Waris, O., Soveri, A., Ritakallio, L., Haga, S., … & Laine, M. (2020). The role of strategy use in working memory training outcomes. Journal of Memory and Language, 110, 104064. DOI: 10.1016/j.jml.2019.104064
- Flak, M. M., Hol, H. R., Hernes, S. S., Chang, L., Engvig, A., Bjuland, K. J., … & Løhaugen, G. C. (2019). Adaptive computerized working memory training in patients with mild cognitive impairment. A randomized double-blind active controlled trial. Frontiers in psychology, 10, 807. DOI: 10.3389/fpsyg.2019.00807
- Foster, J. L., Harrison, T. L., Hicks, K. L., Draheim, C., Redick, T. S., & Engle, R. W. (2017). Do the effects of working memory training depend on baseline ability level? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 1677. DOI: 10.1037/xlm0000426
- Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.
- Goodman, E., Adler, N. E., Kawachi, I., Frazier, A. L., Huang, B., & Colditz, G. A. (2001). Adolescents’ Perceptions of Social Status: Development and Evaluation of a New Indicator. PEDIATRICS, 108(2), e31–e31. DOI: 10.1542/peds.108.2.e31
- Guye, S., De Simoni, C., & von Bastian, C. C. (2017). Do Individual Differences Predict Change in Cognitive Training Performance? A Latent Growth Curve Modeling Approach. Journal of Cognitive Enhancement, 1(4), 374–393. DOI: 10.1007/s41465-017-0049-9
- Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157–1182.
- Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental science, 12(4), F9–F15. DOI: 10.1111/j.1467-7687.2009.00848.x
- Hubert, M., & der Veeken, S. V. (2008). Outlier detection for skewed data. Journal of Chemometrics, 22(3–4), 235–246. DOI: 10.1002/cem.1123
- Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833. DOI: 10.1073/pnas.0801268105
- Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081–10086. DOI: 10.1073/pnas.1103228108
- Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory & Cognition, 42(3), 464–480. DOI: 10.3758/s13421-013-0364-z
- Karbach, J., Strobach, T., & Schubert, T. (2015). Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychology, 21(3), 285–301. DOI: 10.1080/09297049.2014.899336
- Karbach, J., Könen, T., & Spengler, M. (2017). Who Benefits the Most? Individual Differences in the Transfer of Executive Control Training Across the Lifespan. Journal of Cognitive Enhancement, 1(4), 394–405. DOI: 10.1007/s41465-017-0054-z
- Katz, B., Jones, M. R., Shah, P., Buschkuehl, M., & Jaeggi, S. M. (2021).
Individual Differences in Cognitive Training Research . In T. Strobach & J. Karbach (Eds.), Cognitive Training: An Overview of Features and Applications (pp. 107–123). Springer International Publishing. DOI: 10.1007/978-3-030-39292-5_8 - Kekäläinen, T., Terracciano, A., Tirkkonen, A., Savikangas, T., Hänninen, T., Neely, A. S., … & Kokko, K. (2023). Does personality moderate the efficacy of physical and cognitive training interventions? A 12-month randomized controlled trial in older adults. Personality and Individual Differences, 202, 111957. DOI: 10.1016/j.paid.2022.111957
- Khan, N. A., & Hillman, C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatric exercise science, 26(2), 138–146. DOI: 10.1123/pes.2013-0125
- Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. DOI: 10.1016/j.tics.2010.05.002
- Könen, T., & Karbach, J. (2015). The benefits of looking at intraindividual dynamics in cognitive training data. Frontiers in Psychology, 6. DOI: 10.3389/fpsyg.2015.00615
- Laine, M., Fellman, D., Waris, O., & Nyman, T. J. (2018). The early effects of external and internal strategies on working memory updating training. Scientific Reports, 8(1), 4045. DOI: 10.1038/s41598-018-22396-5
- Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern recognition, 36(2), 451–461. DOI: 10.1016/S0031-3203(02)00060-2
- Lövdén, M., Brehmer, Y., Li, S. C., & Lindenberger, U. (2012). Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in human neuroscience, 6, 141. DOI: 10.3389/fnhum.2012.00141
- Luan, H., & Tsai, C. C. (2021). A review of using machine learning approaches for precision education. Educational Technology & Society, 24(1), 250–266.
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
- Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.
- Macpherson, H., Teo, W. P., Schneider, L. A., & Smith, A. E. (2017). A life-long approach to physical activity for brain health. Frontiers in aging neuroscience, 9, 147. DOI: 10.3389/fnagi.2017.00147
- Major, J. T., Johnson, W., & Deary, I. J. (2014). Linear and nonlinear associations between general intelligence and personality in Project TALENT. Journal of personality and social psychology, 106(4), 638. DOI: 10.1037/a0035815
- Matysiak, O., Kroemeke, A., & Brzezicka, A. (2019). Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Frontiers in Aging Neuroscience, 11, 126. DOI: 10.3389/fnagi.2019.00126
- McCrae, R. R., & Sutin, A. R. (2009).
Openness to experience . In M. R. Leary & R. H. Hoyle (Eds.), Handbook of individual differences in social behavior (pp. 257–273). The Guilford Press. - McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 196–204. DOI: 10.1037/a0014104
- Meiran, N., Dreisbach, G., & von Bastian, C. C. (2019). Mechanisms of working memory training: Insights from individual differences. Intelligence, 73, 78–87. DOI: 10.1016/j.intell.2019.01.010
- Melby-Lervåg, M., & Hulme, C. (2016). There is no convincing evidence that working memory training is effective: A reply to Au et al. (2014) and Karbach and Verhaeghen (2014). Psychonomic Bulletin & Review, 23(1), 324–330. DOI: 10.3758/s13423-015-0862-z
- Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning, second edition. MIT Press.
- Nemmi, F., Nymberg, C., Helander, E., & Klingberg, T. (2016). Grit Is Associated with Structure of Nucleus Accumbens and Gains in Cognitive Training. Journal of Cognitive Neuroscience, 28(11), 1688–1699. DOI: 10.1162/jocn_a_01031
- Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine Learning in Psychometrics and Psychological Research. Frontiers in Psychology, 10, 2970. DOI: 10.3389/fpsyg.2019.02970
- Ørskov, P. T., Norup, A., Beatty, E. L., & Jaeggi, S. M. (2021). Exploring individual differences as predictors of performance change during dual-n-back training. Journal of Cognitive Enhancement, 5(4), 480–498. DOI: 10.1007/s41465-021-00216-5
- Pahor, A., Collins, C., Smith-Peirce, R. N., Moon, A., Stavropoulos, T., Silva, I., Peng, E., Jaeggi, S. M., & Seitz, A. R. (2021). Multisensory Facilitation of Working Memory Training. Journal of Cognitive Enhancement, 5(3), 386–395. DOI: 10.1007/s41465-020-00196-y
- Pahor, A., Seitz, A. R., & Jaeggi, S. M. (2022). Near transfer to an unrelated N-back task mediates the effect of N-back working memory training on matrix reasoning. Nature Human Behaviour, 6(9), 1243–1256. DOI: 10.1038/s41562-022-01384-w
- Pahor, A., Stavropoulos, T., Jaeggi, S. M., & Seitz, A. R. (2019). Validation of a matrix reasoning task for mobile devices. Behavior Research Methods, 51(5), 2256–2267. DOI: 10.3758/s13428-018-1152-2
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., et al. (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12(2011): 2825–2830.
- Ramani, G. B., Daubert, E. N., Lin, G. C., Kamarsu, S., Wodzinski, A., & Jaeggi, S. M. (2020). Racing dragons and remembering aliens: Benefits of playing number and working memory games on kindergartners’ numerical knowledge. Developmental Science, 23(4). DOI: 10.1111/desc.12908
- Rebok, G. W., Carlson, M. C., & Langbaum, J. B. (2007). Training and maintaining memory abilities in healthy older adults: traditional and novel approaches. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(Special_Issue_1), 53–61. DOI: 10.1093/geronb/62.special_issue_1.53
- Redick, T. S. (2019). The Hype Cycle of Working Memory Training. Current Directions in Psychological Science, 28(5), 423–429. DOI: 10.1177/0963721419848668
- Robert, C., Borella, E., Fagot, D., Lecerf, T., & De Ribaupierre, A. (2009). Working memory and inhibitory control across the life span: Intrusion errors in the Reading Span Test. Memory & cognition, 37(3), 336–345. DOI: 10.3758/MC.37.3.336
- Sandeep, S., Shelton, C. R., Pahor, A., Jaeggi, S. M., & Seitz, A. R. (2020). Application of Machine Learning Models for Tracking Participant Skills in Cognitive Training. Frontiers in Psychology, 11, 1532. DOI: 10.3389/fpsyg.2020.01532
- Saucier, G. (1994). Mini-Markers: A Brief Version of Goldberg’s Unipolar Big-Five Markers. Journal of Personality Assessment, 63(3), 506–516. DOI: 10.1207/s15327752jpa6303_8
- Schölkopf, B., Tsuda, K., & Vert, J. P. (2004). Kernel methods in computational biology. MIT press. DOI: 10.7551/mitpress/4057.001.0001
- Sigmundsson, H., Englund, K., & Haga, M. (2017). Associations of physical fitness and motor competence with reading skills in 9-and 12-year-old children: a longitudinal study. SAGE Open, 7(2), 2158244017712769. DOI: 10.1177/2158244017712769
- Steyvers, M., & Schafer, R. J. (2020). Inferring latent learning factors in large-scale cognitive training data. Nature Human Behaviour, 4(11), 1145–1155. DOI: 10.1038/s41562-020-00935-3
- Sutin, A. R. (2017).
Openness . In T. A. Widiger (Ed.), The Oxford handbook of the Five Factor Model (pp. 83–104). Oxford University Press. - Taatgen, N. A. (2001). A Model of Individual Differences in Learning Air Traffic Control. 6.
- Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., Chang, P., Pollard, K., Lala, N., Alvarez, G. A., & Gabrieli, J. D. E. (2013). Failure of working memory training to enhance cognition or intelligence. PloS One, 8(5),
e63614 . DOI: 10.1371/journal.pone.0063614 - Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. DOI: 10.1111/j.2517-6161.1996.tb02080.x
- Traut, H. J., Guild, R. M., & Munakata, Y. (2021). Why does cognitive training yield inconsistent benefits? A meta-analysis of individual differences in baseline cognitive abilities and training outcomes. Frontiers in Psychology, 12, 662139. DOI: 10.3389/fpsyg.2021.662139
- Von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013). Effects of working memory training in young and old adults. Memory & cognition, 41(4), 611–624. DOI: 10.3758/s13421-012-0280-7
- Von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: A review. Psychological Research, 78(6), 803–820. DOI: 10.1007/s00426-013-0524-6
- Waris, O., Jaeggi, S. M., Seitz, A. R., Lehtonen, M., Soveri, A., Lukasik, K. M., Söderström, U., Hoffing, R. A. C., & Laine, M. (2019). Video gaming and working memory: A large-scale cross-sectional correlative study. Computers in Human Behavior, 97, 94–103. DOI: 10.1016/j.chb.2019.03.005
- Wechsler, D. (1997). Wechsler Memory Scale 3rd ed The Psychological Corporation (86).
- Wiemers, E. A., Redick, T. S., & Morrison, A. B. (2019). The Influence of Individual Differences in Cognitive Ability on Working Memory Training Gains. Journal of Cognitive Enhancement, 3(2), 174–185. DOI: 10.1007/s41465-018-0111-2
- Wright, A., & Diamond, A. (2014). An effect of inhibitory load in children while keeping working memory load constant. Frontiers in Psychology, 5. DOI: 10.3389/fpsyg.2014.00213
- Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 1100–1122. DOI: 10.1177/1745691617693393
- Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036–1040. DOI: 10.1073/pnas.1418680112
- Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of translational medicine, 4(2).
- Zhang, R. Y., Chopin, A., Shibata, K., Lu, Z. L., Jaeggi, S. M., Buschkuehl, M., … & Bavelier, D. (2021). Action video game play facilitates “learning to learn”. Communications biology, 4(1), 1–10. DOI: 10.1038/s42003-021-02652-7
- Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2012). Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology, 58(1), 79–87. DOI: 10.1159/000324240
- Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304–315. DOI: 10.1037/a0032982
