Have a personal or library account? Click to login
Unicorn, Hare, or Tortoise? Using Machine Learning to Predict Working Memory Training Performance Cover

Unicorn, Hare, or Tortoise? Using Machine Learning to Predict Working Memory Training Performance

Open Access
|Sep 2023

References

  1. Ackerman, P. L. (1992). Predicting individual differences in complex skill acquisition: dynamics of ability determinants. Journal of applied psychology, 77(5), 598. DOI: 10.1037/0021-9010.77.5.598
  2. Ackerman, P. L. (2007). New developments in understanding skilled performance. Current Directions in Psychological Science, 16(5), 235239. DOI: 10.1111/j.1467-8721.2007.00511.x
  3. Albon, C. (2018). Machine learning with python cookbook: Practical solutions from preprocessing to deep learning. “O’Reilly Media, Inc.
  4. Au, J., Buschkuehl, M., Duncan, G. J., & Jaeggi, S. M. (2016). There is no convincing evidence that working memory training is NOT effective: A reply to Melby-Lervåg and Hulme (2015). Psychonomic Bulletin & Review, 23(1), 331337. DOI: 10.3758/s13423-015-0967-4
  5. Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of social and clinical psychology, 4(3), 359373. DOI: 10.1521/jscp.1986.4.3.359
  6. Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: learning to learn and action video games. Annual review of neuroscience, 35, 391416. DOI: 10.1146/annurev-neuro-060909-152832
  7. Berard, A. V., Cain, M. S., Watanabe, T., & Sasaki, Y. (2015). Frequent Video Game Players Resist Perceptual Interference. PLOS ONE, 10(3), e0120011. DOI: 10.1371/journal.pone.0120011
  8. Berrar, D. (2018). Cross-Validation. DOI: 10.1016/B978-0-12-809633-8.20349-X
  9. Bogg, T., & Lasecki, L. (2015). Reliable gains? Evidence for substantially underpowered designs in studies of working memory training transfer to fluid intelligence. Frontiers in psychology, 5, 1589. DOI: 10.3389/fpsyg.2014.01589
  10. Borella, E., Carbone, E., Pastore, M., De Beni, R., & Carretti, B. (2017). Working memory training for healthy older adults: the role of individual characteristics in explaining short-and long-term gains. Frontiers in human neuroscience, 11, 99. DOI: 10.3389/fnhum.2017.00099
  11. Broadbent, D. E., Cooper, P. F., FitzGerald, P., & Parkes, K. R. (1982). The Cognitive Failures Questionnaire (CFQ) and its correlates. British Journal of Clinical Psychology, 21(1), 116. DOI: 10.1111/j.2044-8260.1982.tb01421.x
  12. Bürki, C. N., Ludwig, C., Chicherio, C., & de Ribaupierre, A. (2014). Individual differences in cognitive plasticity: An investigation of training curves in younger and older adults. Psychological Research, 78(6), 821835. DOI: 10.1007/s00426-014-0559-3
  13. Cassilhas, R. C., Tufik, S., & de Mello, M. T. (2016). Physical exercise, neuroplasticity, spatial learning and memory. Cellular and Molecular Life Sciences, 73(5), 975983. DOI: 10.1007/s00018-015-2102-0
  14. Chamorro-Premuzic, T., & Furnham, A. (2009). Mainly Openness: The relationship between the Big Five personality traits and learning approaches. Learning and individual Differences, 19(4), 524529. DOI: 10.1016/j.lindif.2009.06.004
  15. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321357. DOI: 10.1613/jair.953
  16. Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in brain research, 169, 323338. DOI: 10.1016/S0079-6123(07)00020-9
  17. Datu, J. A. D. (2021). Beyond passion and perseverance: Review and future research initiatives on the science of grit. Frontiers in Psychology, 11, 545526. DOI: 10.3389/fpsyg.2020.545526
  18. Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 20372078. DOI: 10.1016/j.neuropsychologia.2006.02.006
  19. Denisko, D., & Hoffman, M. M. (2018). Classification and interaction in random forests. Proceedings of the National Academy of Sciences, 115(8), 16901692. DOI: 10.1073/pnas.1800256115
  20. Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135168. DOI: 10.1146/annurev-psych-113011-143750
  21. Dong, Y., & Peng, C. Y. J. (2013). Principled missing data methods for researchers. SpringerPlus, 2(1), 117. DOI: 10.1186/2193-1801-2-222
  22. Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 10871101. DOI: 10.1037/0022-3514.92.6.1087
  23. Duckworth, A. L., & Quinn, P. D. (2009). Development and Validation of the Short Grit Scale (Grit–S). Journal of Personality Assessment, 91(2), 166174. DOI: 10.1080/00223890802634290
  24. Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive functioning: moving from correlation to causation. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 377386. DOI: 10.1002/wcs.1176
  25. Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. Philadelphia: Psychology Press.
  26. Dweck, C., & Molden, D. C. (2000). Self theories. Handbook of competence and motivation, 122140. DOI: 10.1016/B978-012619070-0/50028-3
  27. Fellman, D., Jylkkä, J., Waris, O., Soveri, A., Ritakallio, L., Haga, S., … & Laine, M. (2020). The role of strategy use in working memory training outcomes. Journal of Memory and Language, 110, 104064. DOI: 10.1016/j.jml.2019.104064
  28. Flak, M. M., Hol, H. R., Hernes, S. S., Chang, L., Engvig, A., Bjuland, K. J., … & Løhaugen, G. C. (2019). Adaptive computerized working memory training in patients with mild cognitive impairment. A randomized double-blind active controlled trial. Frontiers in psychology, 10, 807. DOI: 10.3389/fpsyg.2019.00807
  29. Foster, J. L., Harrison, T. L., Hicks, K. L., Draheim, C., Redick, T. S., & Engle, R. W. (2017). Do the effects of working memory training depend on baseline ability level? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 1677. DOI: 10.1037/xlm0000426
  30. Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.
  31. Goodman, E., Adler, N. E., Kawachi, I., Frazier, A. L., Huang, B., & Colditz, G. A. (2001). Adolescents’ Perceptions of Social Status: Development and Evaluation of a New Indicator. PEDIATRICS, 108(2), e31e31. DOI: 10.1542/peds.108.2.e31
  32. Guye, S., De Simoni, C., & von Bastian, C. C. (2017). Do Individual Differences Predict Change in Cognitive Training Performance? A Latent Growth Curve Modeling Approach. Journal of Cognitive Enhancement, 1(4), 374393. DOI: 10.1007/s41465-017-0049-9
  33. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 11571182.
  34. Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental science, 12(4), F9F15. DOI: 10.1111/j.1467-7687.2009.00848.x
  35. Hubert, M., & der Veeken, S. V. (2008). Outlier detection for skewed data. Journal of Chemometrics, 22(3–4), 235246. DOI: 10.1002/cem.1123
  36. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 68296833. DOI: 10.1073/pnas.0801268105
  37. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 1008110086. DOI: 10.1073/pnas.1103228108
  38. Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory & Cognition, 42(3), 464480. DOI: 10.3758/s13421-013-0364-z
  39. Karbach, J., Strobach, T., & Schubert, T. (2015). Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychology, 21(3), 285301. DOI: 10.1080/09297049.2014.899336
  40. Karbach, J., Könen, T., & Spengler, M. (2017). Who Benefits the Most? Individual Differences in the Transfer of Executive Control Training Across the Lifespan. Journal of Cognitive Enhancement, 1(4), 394405. DOI: 10.1007/s41465-017-0054-z
  41. Katz, B., Jones, M. R., Shah, P., Buschkuehl, M., & Jaeggi, S. M. (2021). Individual Differences in Cognitive Training Research. In T. Strobach & J. Karbach (Eds.), Cognitive Training: An Overview of Features and Applications (pp. 107123). Springer International Publishing. DOI: 10.1007/978-3-030-39292-5_8
  42. Kekäläinen, T., Terracciano, A., Tirkkonen, A., Savikangas, T., Hänninen, T., Neely, A. S., … & Kokko, K. (2023). Does personality moderate the efficacy of physical and cognitive training interventions? A 12-month randomized controlled trial in older adults. Personality and Individual Differences, 202, 111957. DOI: 10.1016/j.paid.2022.111957
  43. Khan, N. A., & Hillman, C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatric exercise science, 26(2), 138146. DOI: 10.1123/pes.2013-0125
  44. Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317324. DOI: 10.1016/j.tics.2010.05.002
  45. Könen, T., & Karbach, J. (2015). The benefits of looking at intraindividual dynamics in cognitive training data. Frontiers in Psychology, 6. DOI: 10.3389/fpsyg.2015.00615
  46. Laine, M., Fellman, D., Waris, O., & Nyman, T. J. (2018). The early effects of external and internal strategies on working memory updating training. Scientific Reports, 8(1), 4045. DOI: 10.1038/s41598-018-22396-5
  47. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern recognition, 36(2), 451461. DOI: 10.1016/S0031-3203(02)00060-2
  48. Lövdén, M., Brehmer, Y., Li, S. C., & Lindenberger, U. (2012). Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in human neuroscience, 6, 141. DOI: 10.3389/fnhum.2012.00141
  49. Luan, H., & Tsai, C. C. (2021). A review of using machine learning approaches for precision education. Educational Technology & Society, 24(1), 250266.
  50. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
  51. Lundberg, S. M., Erion, G. G., & Lee, S. I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888.
  52. Macpherson, H., Teo, W. P., Schneider, L. A., & Smith, A. E. (2017). A life-long approach to physical activity for brain health. Frontiers in aging neuroscience, 9, 147. DOI: 10.3389/fnagi.2017.00147
  53. Major, J. T., Johnson, W., & Deary, I. J. (2014). Linear and nonlinear associations between general intelligence and personality in Project TALENT. Journal of personality and social psychology, 106(4), 638. DOI: 10.1037/a0035815
  54. Matysiak, O., Kroemeke, A., & Brzezicka, A. (2019). Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Frontiers in Aging Neuroscience, 11, 126. DOI: 10.3389/fnagi.2019.00126
  55. McCrae, R. R., & Sutin, A. R. (2009). Openness to experience. In M. R. Leary & R. H. Hoyle (Eds.), Handbook of individual differences in social behavior (pp. 257273). The Guilford Press.
  56. McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 196204. DOI: 10.1037/a0014104
  57. Meiran, N., Dreisbach, G., & von Bastian, C. C. (2019). Mechanisms of working memory training: Insights from individual differences. Intelligence, 73, 7887. DOI: 10.1016/j.intell.2019.01.010
  58. Melby-Lervåg, M., & Hulme, C. (2016). There is no convincing evidence that working memory training is effective: A reply to Au et al. (2014) and Karbach and Verhaeghen (2014). Psychonomic Bulletin & Review, 23(1), 324330. DOI: 10.3758/s13423-015-0862-z
  59. Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning, second edition. MIT Press.
  60. Nemmi, F., Nymberg, C., Helander, E., & Klingberg, T. (2016). Grit Is Associated with Structure of Nucleus Accumbens and Gains in Cognitive Training. Journal of Cognitive Neuroscience, 28(11), 16881699. DOI: 10.1162/jocn_a_01031
  61. Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & Sartori, G. (2020). Machine Learning in Psychometrics and Psychological Research. Frontiers in Psychology, 10, 2970. DOI: 10.3389/fpsyg.2019.02970
  62. Ørskov, P. T., Norup, A., Beatty, E. L., & Jaeggi, S. M. (2021). Exploring individual differences as predictors of performance change during dual-n-back training. Journal of Cognitive Enhancement, 5(4), 480498. DOI: 10.1007/s41465-021-00216-5
  63. Pahor, A., Collins, C., Smith-Peirce, R. N., Moon, A., Stavropoulos, T., Silva, I., Peng, E., Jaeggi, S. M., & Seitz, A. R. (2021). Multisensory Facilitation of Working Memory Training. Journal of Cognitive Enhancement, 5(3), 386395. DOI: 10.1007/s41465-020-00196-y
  64. Pahor, A., Seitz, A. R., & Jaeggi, S. M. (2022). Near transfer to an unrelated N-back task mediates the effect of N-back working memory training on matrix reasoning. Nature Human Behaviour, 6(9), 12431256. DOI: 10.1038/s41562-022-01384-w
  65. Pahor, A., Stavropoulos, T., Jaeggi, S. M., & Seitz, A. R. (2019). Validation of a matrix reasoning task for mobile devices. Behavior Research Methods, 51(5), 22562267. DOI: 10.3758/s13428-018-1152-2
  66. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., et al. (2011). Scikit-learn: Machine learning in Python. The Journal of machine Learning research, 12(2011): 28252830.
  67. Ramani, G. B., Daubert, E. N., Lin, G. C., Kamarsu, S., Wodzinski, A., & Jaeggi, S. M. (2020). Racing dragons and remembering aliens: Benefits of playing number and working memory games on kindergartners’ numerical knowledge. Developmental Science, 23(4). DOI: 10.1111/desc.12908
  68. Rebok, G. W., Carlson, M. C., & Langbaum, J. B. (2007). Training and maintaining memory abilities in healthy older adults: traditional and novel approaches. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(Special_Issue_1), 5361. DOI: 10.1093/geronb/62.special_issue_1.53
  69. Redick, T. S. (2019). The Hype Cycle of Working Memory Training. Current Directions in Psychological Science, 28(5), 423429. DOI: 10.1177/0963721419848668
  70. Robert, C., Borella, E., Fagot, D., Lecerf, T., & De Ribaupierre, A. (2009). Working memory and inhibitory control across the life span: Intrusion errors in the Reading Span Test. Memory & cognition, 37(3), 336345. DOI: 10.3758/MC.37.3.336
  71. Sandeep, S., Shelton, C. R., Pahor, A., Jaeggi, S. M., & Seitz, A. R. (2020). Application of Machine Learning Models for Tracking Participant Skills in Cognitive Training. Frontiers in Psychology, 11, 1532. DOI: 10.3389/fpsyg.2020.01532
  72. Saucier, G. (1994). Mini-Markers: A Brief Version of Goldberg’s Unipolar Big-Five Markers. Journal of Personality Assessment, 63(3), 506516. DOI: 10.1207/s15327752jpa6303_8
  73. Schölkopf, B., Tsuda, K., & Vert, J. P. (2004). Kernel methods in computational biology. MIT press. DOI: 10.7551/mitpress/4057.001.0001
  74. Sigmundsson, H., Englund, K., & Haga, M. (2017). Associations of physical fitness and motor competence with reading skills in 9-and 12-year-old children: a longitudinal study. SAGE Open, 7(2), 2158244017712769. DOI: 10.1177/2158244017712769
  75. Steyvers, M., & Schafer, R. J. (2020). Inferring latent learning factors in large-scale cognitive training data. Nature Human Behaviour, 4(11), 11451155. DOI: 10.1038/s41562-020-00935-3
  76. Sutin, A. R. (2017). Openness. In T. A. Widiger (Ed.), The Oxford handbook of the Five Factor Model (pp. 83104). Oxford University Press.
  77. Taatgen, N. A. (2001). A Model of Individual Differences in Learning Air Traffic Control. 6.
  78. Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., Chang, P., Pollard, K., Lala, N., Alvarez, G. A., & Gabrieli, J. D. E. (2013). Failure of working memory training to enhance cognition or intelligence. PloS One, 8(5), e63614. DOI: 10.1371/journal.pone.0063614
  79. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267288. DOI: 10.1111/j.2517-6161.1996.tb02080.x
  80. Traut, H. J., Guild, R. M., & Munakata, Y. (2021). Why does cognitive training yield inconsistent benefits? A meta-analysis of individual differences in baseline cognitive abilities and training outcomes. Frontiers in Psychology, 12, 662139. DOI: 10.3389/fpsyg.2021.662139
  81. Von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013). Effects of working memory training in young and old adults. Memory & cognition, 41(4), 611624. DOI: 10.3758/s13421-012-0280-7
  82. Von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: A review. Psychological Research, 78(6), 803820. DOI: 10.1007/s00426-013-0524-6
  83. Waris, O., Jaeggi, S. M., Seitz, A. R., Lehtonen, M., Soveri, A., Lukasik, K. M., Söderström, U., Hoffing, R. A. C., & Laine, M. (2019). Video gaming and working memory: A large-scale cross-sectional correlative study. Computers in Human Behavior, 97, 94103. DOI: 10.1016/j.chb.2019.03.005
  84. Wechsler, D. (1997). Wechsler Memory Scale 3rd ed The Psychological Corporation (86).
  85. Wiemers, E. A., Redick, T. S., & Morrison, A. B. (2019). The Influence of Individual Differences in Cognitive Ability on Working Memory Training Gains. Journal of Cognitive Enhancement, 3(2), 174185. DOI: 10.1007/s41465-018-0111-2
  86. Wright, A., & Diamond, A. (2014). An effect of inhibitory load in children while keeping working memory load constant. Frontiers in Psychology, 5. DOI: 10.3389/fpsyg.2014.00213
  87. Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 11001122. DOI: 10.1177/1745691617693393
  88. Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 10361040. DOI: 10.1073/pnas.1418680112
  89. Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of translational medicine, 4(2).
  90. Zhang, R. Y., Chopin, A., Shibata, K., Lu, Z. L., Jaeggi, S. M., Buschkuehl, M., … & Bavelier, D. (2021). Action video game play facilitates “learning to learn”. Communications biology, 4(1), 110. DOI: 10.1038/s42003-021-02652-7
  91. Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2012). Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology, 58(1), 7987. DOI: 10.1159/000324240
  92. Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304315. DOI: 10.1037/a0032982
DOI: https://doi.org/10.5334/joc.319 | Journal eISSN: 2514-4820
Language: English
Submitted on: Feb 16, 2023
|
Accepted on: Aug 15, 2023
|
Published on: Sep 4, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Yi Feng, Anja Pahor, Aaron R. Seitz, Dennis L. Barbour, Susanne M. Jaeggi, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.