References
- 1Anderson, N. C., Bischof, W. F., Laidlaw, K. E. W., Risko, E. F., & Kingstone, A. (2013). Recurrence quantification analysis of eyemovements. Behavior Research Methods, 45, 842–856. DOI: 10.3758/s13428-012-0299-5
- 2Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R Markdown. Retrieved from
https://github.com/crsh/papaja%0D - 3Bischof, W. F., Anderson, N. C., & Kingstone, A. (2019).
Temporal methods for eye movement analysis . In C. Klein & U. Ettinger (Eds.), Eye movement research: An introduction to its scientific foundations and applications (pp. 407–448). Berlin: Springers. Retrieved fromhttps://arxiv.org/abs/arXiv:1011.1669v3 . DOI: 10.1007/978-3-030-20085-5_10 - 4Bochynska, A., & Laeng, B. (2015). Tracking down the path of memory: eye scanpaths facilitate retrieval of visuospatial information. Cognitive Processing, 16(1), 159–163. DOI: 10.1007/s10339-015-0690-0
- 5Borst, G., Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2012). Representations in mental imagery and working memory: Evidence from different types of visual masks. Memory & Cognition, 40(2), 204–217. DOI: 10.3758/s13421-011-0143-7
- 6Borst, G., Kosslyn, S. M., & Denis, M. (2006). Different cognitive processes in two image-scanning paradigms. Memory & Cognition, 34(3), 475–490. DOI: 10.3758/BF03193572
- 7Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience, 9(1), 27–38. DOI: 10.1162/jocn.1997.9.1.27
- 8Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. DOI: 10.32614/RJ-2018-017
- 9Cao, J., & Nishihara, A. (2012). Understand learning style by eye tracking in slide video learning. Journal of Educational Multimedia and Hypermedia, 21(4), 335–358. Retrieved from
https://www.learntechlib.org/p/39182 - 10Chiquet, S., Martarelli, C. S., & Mast, F. W. (2020). Eye movements to absent objects during mental imagery and visual memory in immersive virtual reality. Virtual Reality, (0123456789). DOI: 10.1007/s10055-020-00478-y
- 11Chiquet, S., Martarelli, C. S., & Mast, F. W. (2022). Imagery-related eye movements in 3D space depend on individual differences in visual object imagery. Scientific Reports, 12(1), 1–10. DOI: 10.1038/s41598-022-18080-4
- 12Cocchini, G., Logie, R. H., Della Sala, S., MacPherson, S. E., & Baddeley, A. D. (2002). Concurrent performance of two memory tasks: Evidence for domain-specific working memory systems. Memory and Cognition, 30(7), 1086–1095. DOI: 10.3758/BF03194326
- 13Craver-Lemley, C., & Reeves, A. (1992). How visual imagery interferes with vision. Psychological Review, 99(4), 633–649. DOI: 10.1037/0033-295X.99.4.633
- 14Cristino, F., Mathôt, S., Theeuwes, J., & Gilchrist, I. D. (2010). ScanMatch: A novel method for comparing fixation sequences. Behavior Research Methods, 42(3), 692–700. DOI: 10.3758/BRM.42.3.692
- 15Damiano, C., & Walther, D. B. (2019). Distinct roles of eye movements during memory encoding and retrieval. Cognition, 184(December 2018), 119–129. DOI: 10.1016/j.cognition.2018.12.014
- 16De Beni, R., Pazzaglia, F., & Gardini, S. (2007). The generation and maintenance of visual mental images: Evidence from image type and aging. Brain and Cognition, 63(3), 271–278. DOI: 10.1016/j.bandc.2006.09.004
- 17Dean, G. M., Dewhurst, S. A., Morris, P. E., & Whittaker, A. (2005). Selective Interference With the Use of Visual Images in the Symbolic Distance Paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(5), 1043–1068. DOI: 10.1037/0278-7393.31.5.1043
- 18Dean, G. M., Dewhurst, S. A., & Whittaker, A. (2008). Dynamic visual noise interferes with storage in visual working memory. Experimental Psychology, 55(4), 283–289. DOI: 10.1027/1618-3169.55.4.283
- 19Della Sala, S., Gray, C., Baddeley, A. D., & Wilson, J. T. L. (1997). Visual pattern test: a test of short-term visual recall. Thames Valley Test Company.
- 20Dent, K. (2010). Dynamic Visual Noise Affects Visual Short-Term Memory for Surface Color, but not Spatial Location. 57(1), 17–26. DOI: 10.1027/1618-3169/a000003
- 21Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., & Holmqvist, K. (2012). It depends on how you look at it: Scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach. Behavior Research Methods, 44(4), 1079–1100. DOI: 10.3758/s13428-012-0212-2
- 22Dijkstra, N., Ambrogioni, L., Vidaurre, D., & van Gerven, M. (2020). Neural dynamics of perceptual inference and its reversal during imagery. eLife, 9, 1–19. DOI: 10.7554/eLife.53588
- 23Dror, I. E., & Kosslyn, S. M. (1994). Mental imagery and aging. Psychology and Aging, 9(1), 90–102. DOI: 10.1037//0882-7974.9.1.90
- 24Farah, M. J. (1989). The neural basis of mental imagery. Trends in Neurosciences, 12(10), 395–399. DOI: 10.1016/0166-2236(89)90079-9
- 25Farnand, S. P., Vaidyanathan, P., & Pelz, J. B. (2016). Recurrence metrics for eye movements in perceptual experiments. Journal of Eye Movement Research, 9(4), 1–12. DOI: 10.16910/jemr.9.4.1
- 26Ferreira, F., Apel, J., & Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends in Cognitive Sciences, 12(11), 405–410. DOI: 10.1016/j.tics.2008.07.007
- 27Foerster, R. M. (2018). “Looking-at-nothing” during sequential sensorimotor actions: Long-term memory-based eye scanning of remembered target locations. Vision Research, 144 (June 2017), 29–37. DOI: 10.1016/j.visres.2018.01.005
- 28Gandomkar, Z., Tay, K., Brennan, P. C., & Mello-Thoms, C. (2017). A model based on temporal dynamics of fixations for distinguishing expert radiologists’ scanpaths. Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, 10136,
1013606 . DOI: 10.1117/12.2254527 - 29Gurtner, L. M., Bischof, W. F., & Mast, F. W. (2019). Recurrence quantification analysis of eye movements during mental imagery. Journal of Vision, 19(1),
17 . DOI: 10.1167/19.1.17 - 30Gurtner, L. M., Hartmann, M., & Mast, F. W. (2021). Eye movements during visual imagery and perception show spatial correspondence but have unique temporal signatures. Cognition, 210,
104597 . DOI: 10.1016/j.cognition.2021.104597 - 31Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the Function of Visual Short-Term Memory: Transsaccadic Memory, Object Correspondence, and Gaze Correction. Journal of Experimental Psychology. General, 137(1), 163–181. Understanding. DOI: 10.1037/0096-3445.137.1.163
- 32Johansson, R., Holsanova, J., Dewhurst, R., & Holmqvist, K. (2012). Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding. Journal of Experimental Psychology. Human Perception and Performance, 38(5), 1289–1314. DOI: 10.1037/a0026585
- 33Johansson, R., Holsanova, J., & Holmqvist, K. (2006). Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cognitive Science, 30(6), 1053–1079. DOI: 10.1207/s15516709cog0000_86
- 34Johansson, R., Holsanova, J., & Holmqvist, K. (2011). The dispersion of eye movements during visual imagery is related to individual differences in spatial imagery ability. Proceedings of the 33rd Annual Meeting of the Cognitive Science Society, 1200–1205. DOI: 10.1037/a0026585
- 35Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. Psychological Science, 25(1), 236–242. DOI: 10.1177/0956797613498260
- 36Johansson, R., & Johansson, M. (2020). Gaze position regulates memory accessibility during competitive memory retrieval. Cognition, 197,
104169 . DOI: 10.1016/j.cognition.2019.104169 - 37Kemps, E., & Andrade, J. (2012). Dynamic visual noise reduces confidence in short-Term memory for visual information. Cognitive Processing, 13(2), 183–188. DOI: 10.1007/s10339-011-0429-5
- 38Kinjo, H., Fooken, J., & Spering, M. (2020). Do eye movements enhance visual memory retrieval? Vision Research, 176(July), 80–90. DOI: 10.1016/j.visres.2020.07.013
- 39Kosslyn, S. M. (1994). Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/3653.001.0001
- 40Laeng, B., & Teodorescu, D.-S. (2002). Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognitive Science, 26, 207–231. DOI: 10.1207/s15516709cog2602_3
- 41Mast, F. W., & Kosslyn, S. M. (2002). Visual mental images can be ambiguous: Insights from individual differences in spatial transformation abilities. Cognition, 86(1), 57–70. DOI: 10.1016/S0010-0277(02)00137-3
- 42McConnell, J., & Quinn, J. G. (2004). Complexity factors in visuo-spatial working memory Complexity factors in visuo-spatial working memory. Memory, 12(3), 338–350. DOI: 10.1080/09658210344000035
- 43Orme, E. (2009). Identifying the Functional Architecture Underlying Multiple Representations in Visual Working Memory (PhD thesis). Doctoral Thesis, Northumbria University.
- 44Palmiero, M., Piccardi, L., Giancola, M., Nori, R., D’Amico, S., & Olivetti Belardinelli, M. (2019). The format of mental imagery: from a critical review to an integrated embodied representation approach. Cognitive Processing, 20(3), 277–289. DOI: 10.1007/s10339-019-00908-z
- 45Pearson, D. G., Ball, K., & Smith, D. T. (2014). Oculomotor preparation as a rehearsal mechanism in spatial working memory. Cognition, 132(3), 416–428. DOI: 10.1016/j.cognition.2014.05.006
- 46Pearson, J., Clifford, C. W., & Tong, F. (2008). The functional impact of mental imagery on conscious perception. Current Biology, 18(13), 982–986. DOI: 10.1016/j.cub.2008.05.048
- 47Pearson, J., & Keogh, R. (2019). Redefining visual working memory: A cognitive-strategy, brain-region approach. Current Directions in Psychological Science, 28(3), 266–273. DOI: 10.1177/0963721419835210
- 48Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the imagery debate. Proceedings of the National Academy of Sciences, 112, 10089–10092. DOI: 10.1073/pnas.1504933112
- 49Piccardi, L., De Luca, M., Nori, R., Palermo, L., Iachini, F., & Guariglia, C. (2016). Navigational style influences eye movement pattern during exploration and learning of an environmental map. Frontiers in Behavioral Neuroscience, 10(Jun), 1–15. DOI: 10.3389/fnbeh.2016.00140
- 50Pylyshyn, Z. W. (1981). The Imagery Debate: Analogue media versus tacit knowledge. Psychological Review, 88 (1), 16–45. DOI: 10.1037/0033-295X.88.1.16
- 51Pylyshyn, Z. W. (2002). Mental imagery: in search of a theory. Behavioral and Brain Sciences, 25, 157–238. DOI: 10.1017/S0140525X02000043
- 52R Core Team. (2015). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
http://www.r-project.org/ - 53Recarte, M. A., & Nunes, L. M. (2000). Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology: Applied, 6(1), 31–43. DOI: 10.1037/1076-898X.6.1.31
- 54Reeves, A., & Craver-Lemley, C. (2012). Unmasking the Perky effect. Frontiers in Psychology,
3 . DOI: 10.3389/fpsyg.2012.00296 - 55Reeves, A., Grayhem, R., & Craver-Lemley, C. (2020). The Perky effect revisited: Imagery hinders perception at high levels, but aids it at low. Vision Research, 167(June 2019), 8–14. DOI: 10.1016/j.visres.2019.12.004
- 56RStudio_Team. (2016). RStudio: Integrated Development Environment for R. Boston, MA: RStudio, Inc. Retrieved from
http://www.rstudio.com/ - 57Scholz, A., Klichowicz, A., & Krems, J. F. (2018). Covert shifts of attention can account for the functional role of “eye movements to nothing”. Memory and Cognition, 46(2), 230–243. DOI: 10.3758/s13421-017-0760-x
- 58Scholz, A., Mehlhorn, K., Bocklish, F., & Krems, J. F. (2011). Looking at nothing diminishes with practice. Proceedings of the Annual Meeting of the Cognitive Science Society, 33(33), 66–67.
- 59Schurgin, M. W. (2018). Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Attention, Perception, and Psychophysics, 80(April), 1035–1056. DOI: 10.3758/s13414-018-1522-y
- 60Sperling, G. (1963). A Model for Visual Memory Tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society, 1, 19–31. DOI: 10.1177/001872086300500103
- 61Stigchel, S. V. D., & Hollingworth, A. (2018). Visuospatial Working Memory as a Fundamental Component of the Eye Movement System. Current Directions in Psychological Science, 27(2), 136–143. DOI: 10.1177/0963721417741710
- 62Teng, C., & Kravitz, D. J. (2019). Visual working memory directly alters perception. Nature Human Behaviour, 3(8), 827–836. DOI: 10.1038/s41562-019-0640-4
- 63Tong, F. (2013). Imagery and visual working memory: one and the same? Trends in Cognitive Sciences, 17(10), 489–490. DOI: 10.1016/j.tics.2013.08.005
- 64Vaidyanathan, P., Pelz, J., Alm, C., Shi, P., & Haake, A. (2014). Recurrence quantification analysis reveals eye-movement behavior differences between experts and novices. Proceedings of the Symposium on Eye Tracking Research and Applications, 303–306. Safety Harbor, Florida:
ACM . DOI: 10.1145/2578153.2578207 - 65Vasques, R., Garcia, R. B., & Galera, C. (2016). Short-term memory recall of visual patterns under static and dynamic visual noise. Psychology & Neuroscience, 9(1), 46–53. DOI: 10.1037/pne0000039
- 66Wais, P. E., Rubens, M. T., Boccanfuso, J., & Gazzaley, A. (2010). Neural Mechanisms Underlying the Impact of Visual Distraction on Retrieval of Long-Term Memory. Journal of Neuroscience, 30(25), 8541–8550. DOI: 10.1523/JNEUROSCI.1478-10.2010
- 67Webber, C. L.,
Jr. , & Zbilut, J. P. (1994). Dynamical assessment of physiological systems and states using recurrence plot strategies. Journal of Applied Physiology, 76(2), 965–973. DOI: 10.1152/jappl.1994.76.2.965 - 68Webber, C. L.,
Jr. , & Zbilut, J. P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. Tutorials in Comtemporarty Nonlinear Methods for the Behavioural Sciences (pp. 26–94). - 69Wickham, H. (2017). tidyverse: Easily Install and Load the ‘Tidyverse’. Retrieved from
https://cran.r-project.org/package=tidyverse - 70Wynn, J. S., Bone, M. B., Dragan, M. C., Hoffman, K. L., Buchsbaum, B. R., & Ryan, J. D. (2016). Selective scanpath repetition during memory-guided visual search. Visual Cognition, 24(1), 15–37. DOI: 10.1080/13506285.2016.1175531
- 71Wynn, J. S., Olsen, R. K., Binns, M. A., Buchsbaum, B. R., & Ryan, J. D. (2018). Fixation reinstatement supports visuospatial memory in older adults. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1119–1127. DOI: 10.1037/xhp0000522
- 72Zhang, H. (2020). Mind-Wandering: What Can We Learn from Eye Movements? DOI: 10.31234/osf.io/n9fbz
- 73Zhang, H., Anderson, N. C., & Miller, K. F. (2021). Refixation patterns of Mind-wandering during Real-world Scene Perception. Journal of Experimental Psychology. Human Perception and Performance, 47(1), 36–52. DOI: 10.1037/xhp0000877
- 74Zimmer, H. D., & Speiser, H. R. (2002). The irrelevant picture effect in visuo-spatial working memory: Fact or fiction? Psychological Test and Assessment Modeling, 44(2), 223–247.
