References
- Algina, J., Keselman, H. J., & Penfield, R. D. (2005). An alternative to Cohen’s standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups case. Psychological Methods, 10(3), 317–328. DOI: 10.1037/1082-989X.10.3.317
- Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. DOI: 10.1111/j.0963-7214.2004.01502006.x
- Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628. DOI: 10.1111/j.1467-9280.2007.01949.x
- Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553–573. DOI: 10.1037/0033-2909.130.4.553
- Bavelier, D., Shawn Green, C., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience, 35(June 2016), 391–416. DOI: 10.1146/annurev-neuro-060909-152832
- Bays, P. M. (2016). Evaluating and excluding swap errors in analogue tests of working memory. Scientific Reports, 6(19203). DOI: 10.1038/srep19203
- Belleville, S., Mellah, S., De Boysson, C., Demonet, J. F., & Bier, B. (2014). The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PLoS ONE, 9(8). DOI: 10.1371/journal.pone.0102710
- Boduroglu, A., Shah, P., & Nisbett, R. E. (2009). Cultural differences in allocation of attention in visual information processing. Journal of Cross-Cultural Psychology, 40(3), 349–360. DOI: 10.1177/0022022108331005
- Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487–502. DOI: 10.1037/a0016797
- Buschkuehl, M., Jaeggi, S. M., Mueller, S. T., Shah, P., & Jonides, J. (2017). Training change detection leads to substantial task-specific improvement. Journal of Cognitive Enhancement, 1(4), 419–433. DOI: 10.1007/s41465-017-0055-y
- Carpenter, J., Sherman, M. T., Kievit, R. A., Seth, A. K., Lau, H., & Fleming, S. M. (2019). Domain-general enhancements of metacognitive ability through adaptive training. Journal of Experimental Psychology: General, 148(1), 51–64. DOI: 10.1037/xge0000505
- Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. DOI: 10.1016/j.tics.2003.10.005
- Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. DOI: 10.1017/S0140525X01003922
- Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620–628. DOI: 10.3758/BF03196811
- De Simoni, C., & von Bastian, C. C. (2018). Working memory updating and binding training: Bayesian evidence supporting the absence of transfer. Journal of Experimental Psychology: General, 147(6), 829–858. DOI: 10.1037/xge0000453
- Engle, R. W., Laughlin, J. E., Tuholski, S. W., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. DOI: 10.1037//0096-3445.128.3.309
- Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7470–7474. DOI: 10.1073/pnas.1601243113
- Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision, 10(12), 27. DOI: 10.1167/10.12.27
- Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin and Review, 17(5), 673–679. DOI: 10.3758/17.5.673
- Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31(23), 8502–8511. DOI: 10.1523/JNEUROSCI.0208-11.2011
- Guye, S., & von Bastian, C. C. (2017). Working memory training in older adults: Bayesian evidence supporting the absence of transfer. Psychology and Aging, 32(8), 732–746. DOI: 10.1037/pag0000206
- Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. DOI: 10.1073/pnas.0801268105
- Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2012). Cogmed and working memory training–Current challenges and the search for underlying mechanisms. Journal of Applied Research in Memory and Cognition, 1(3), 211–213. DOI: 10.1016/j.jarmac.2012.07.002
- Karbach, J., & Verhaeghen, P. (2015). Making working memory work: A meta-analysis of executive control and working memory training in younger and older adults. Psychol Sci, 25(11), 2027–2037. DOI: 10.1177/0956797614548725
- Kassambara, A. (2021). rstatix: Pipe-Friendly framework for basic statistical tests.
https://cran.r-project.org/package=rstatix - Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. DOI: 10.1016/j.tics.2010.05.002
- Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791. DOI: 10.1076/jcen.24.6.781.8395
- Kong, G., & Fougnie, D. (2019). Visual search within working memory. Journal of Experimental Psychology: General, 148(10), 1688–1700. DOI: 10.1037/xge0000555
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(NOV), 863. DOI: 10.3389/fpsyg.2013.00863
- Lampit, A., Gavelin, H. M., Sabates, J., Launder, N. H., Hallock, H., Finke, C., Krohn, S., & Peeters, G. (2020). Computerized cognitive training in cognitively healthy older adults: A systematic review and network meta-analysis. MedRxiv. DOI: 10.1101/2020.10.07.20208306
- Lawrence, M. A. (2016). ez: Easy analysis and visualization of factorial experiments.
https://cran.r-project.org/package=ez - Ly, A., Verhagen, J., & Wagenmakers, E. J. (2016). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19–32. DOI: 10.1016/j.jmp.2015.06.004
- Ma, W. J., Husain, M., Bays, P. M., Ma, W. J., Husain, M., Bays, P. M., Ji Ma, W., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347–356. DOI: 10.1038/nn.3655
- Mair, P., & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. Behavior Research Methods, 52, 464–488. DOI: 10.3758/s13428-019-01246-w
- Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44(4), 377–384. DOI: 10.1097/01.chi.0000153228.72591.73
- Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512–534. DOI: 10.1177/1745691616635612
- Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. DOI: 10.1006/cogp.1999.0734
- Morey, R. D., & Rouder, J. N. (2021). BayesFactor: Computation of Bayes factors for common designs.
https://cran.r-project.org/package=BayesFactor - Moriya, J. (2019). Visual-working-memory training improves both quantity and quality. Journal of Cognitive Enhancement, 3, 221–232. DOI: 10.1007/s41465-018-00120-5
- Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? the promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18(1), 46–60. DOI: 10.3758/s13423-010-0034-0
- Oberauer, K. (2021). Measurement models for visual working memory—A factorial model comparison. Psychological Review, September(27). DOI: 10.1037/rev0000328
- Oberauer, K., Süß, H. M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36(6), 641–652. DOI: 10.1016/j.intell.2008.01.007
- Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strong-object” hypothesis. Perception and Psychophysics, 64(7), 1055–1067. DOI: 10.3758/BF03194756
- Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 889–900. DOI: 10.1037/0096-1523.31.5.889
- Ovalle Fresa, R., & Rothen, N. (2019). Training enhances fidelity of color representations in visual long-term memory. J Cogn Enhanc, 3(3), 315–327. DOI: 10.1007/s41465-019-00121-y
- Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320. DOI: 10.1037/0882-7974.17.2.299
- Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4), 369–378. DOI: 10.3758/BF03210419
- R Core Team. (2022). R: A language and environment for statistical computing (4.1.3). R Foundation for Statistical Computing.
https://www.r-project.org/ - Redick, T. S. (2019). The hype cycle of working memory training. Current Directions in Psychological Science, 28(5), 423–429. DOI: 10.1177/0963721419848668
- Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., Kane, M. J., & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. DOI: 10.1037/a0029082
- Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin and Review, 18(2), 324–330. DOI: 10.3758/s13423-011-0055-3
- Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(2012), 356–374. DOI: 10.1016/j.jmp.2012.08.001
- Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Psychophysical scaling reveals a unified theory of visual memory strength. Nature Human Behaviour, 4(11), 1156–1172. DOI: 10.1038/s41562-020-00938-0
- Scolari, M., Vogel, E. K., & Awh, E. (2008). Perceptual expertise enhances the resolution but not the number of representations in working memory. Psychonomic Bulletin and Review, 15(1), 215–222. DOI: 10.3758/PBR.15.1.215
- Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. DOI: 10.1037/a0027473
- Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186. DOI: 10.1177/1529100616661983
- Smid, C. R., Karbach, J., & Steinbeis, N. (2020). Toward a science of effective cognitive training. Current Directions in Psychological Science, 29(6), 531–537. DOI: 10.1177/0963721420951599
- Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13(10), 1–8. DOI: 10.1167/13.10.9
- Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754. DOI: 10.1038/nature02466
- Truong, J., Buschkuehl, M., Smith-Peirce, R. N., Carrillo, A. A., Seitz, A. R., & Jaeggi, S. M. (2022). Change-detection training and its effects on visual processing skills. Scientific Reports, 12(1), 1–14. DOI: 10.1038/s41598-022-15649-x
- von Bastian, C. C., Belleville, S., Reinhartz, A., & Strobach, T. (2023). Reply to ‘Efficiency and capacity mechanisms can coexist in cognitive training.’ Nature Reviews Psychology, 2(2), 128. DOI: 10.1038/s44159-022-00147-8
- von Bastian, C. C., Belleville, S., Udale, R. C., Reinhartz, A., Essounni, M., & Strobach, T. (2022). Mechanisms underlying training-induced cognitive change. Nature Reviews Psychology, 1(1), 30–41. DOI: 10.1038/s44159-021-00001-3
- von Bastian, C. C., & Eschen, A. (2016). Does working memory training have to be adaptive? Psychological Research, 80(2), 181–194. DOI: 10.1007/s00426-015-0655-z
- von Bastian, C. C., Locher, A., & Ruflin, M. (2013). Tatool: A Java-based open-source programming framework for psychological studies. Behavior Research Methods, 45(1), 108–115. DOI: 10.3758/s13428-012-0224-y
- von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: A Review. Psychological Research, 78(6), 803–820. DOI: 10.1007/s00426-013-0524-6
- Wang, K., & Qian, J. (2021). Training with high perceptual difficulty improves the capacity and fidelity of internal representation in VWM. Psychological Research, 85(6), 2408–2419. DOI: 10.1007/s00426-020-01404-2
- Wetzels, R., & Wagenmakers, E. J. (2012). A default Bayesian hypothesis test for correlations and partial correlations. Psychonomic Bulletin and Review, 19(6), 1057–1064. DOI: 10.3758/s13423-012-0295-x
- Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 1120–1135. DOI: 10.1167/4.12.11
- Wolfe, J. M., & Horowitz, T. S. (1998). Visual search has no memory. Nature, 394, 575–577. DOI: 10.1038/29068
- Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219–224. DOI: 10.1111/1467-9280.00339
- Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91–95. DOI: 10.1038/nature04262
- Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 61(1), 165–170.
http://www.jstor.com/stable/2334299 . DOI: 10.1093/biomet/61.1.165 - Zerr, P., Gayet, S., van den Esschert, F., Kappen, M., Olah, Z., & Van der Stigchel, S. (2021). The development of retro-cue benefits with extensive practice: Implications for capacity estimation and attentional states in visual working memory. Memory and Cognition, 49(5), 1036–1049. DOI: 10.3758/s13421-021-01138-5
- Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. DOI: 10.1038/nature06860
