References
- 1Aust, F., & Barth, M. (2022). papaja: Prepare reproducible APA journal articles with R Markdown. Retrieved from
https://github.com/crsh/papaja - 2Barth, M. (2022). tinylabels: Lightweight variable labels. Retrieved from
https://cran.r-project.org/package=tinylabels - 3Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamic perspective. Implicit Learning and Consciousness (pp. 1–40).
- 4Dunn, J. C., & Kirsner, K. (1988). Discovering functionally independent mental processes: The principle of reversed association. Psychological Review, 95(1), 91–101. DOI: 10.1037//0033-295X.95.1.91
- 5Eberhardt, K., Esser, S., & Haider, H. (2017). Abstract feature codes: The building blocks of the implicit learning system. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1275–1290. DOI: 10.1037/xhp0000380
- 6Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125. DOI: 10.1016/j.tics.2014.12.010
- 7Goschke, T., & Bolte, A. (2012). On the modularity of implicit sequence learning: Independent acquisition of spatial, symbolic, and manual sequences. Cognitive Psychology, 65(2), 284–320. DOI: 10.1016/j.cogpsych.2012.04.002
- 8Guest, D., & Lamberts, K. (2011). The time course of similarity effects in visual search. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1667–1688. DOI: 10.1037/a0025640
- 9Haider, H., Esser, S., & Eberhardt, K. (2018). Feature codes in implicit sequence learning: Perceived stimulus locations transfer to motor response locations. Psychological Research, 1–12. DOI: 10.1007/s00426-018-0980-0
- 10Haider, H., Esser, S., & Eberhardt, K. (2020). Feature codes in implicit sequence learning: Perceived stimulus locations transfer to motor response locations. Psychological Research, 84(1), 192–203. DOI: 10.1007/s00426-018-0980-0
- 11Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments, & Computers, 16(2), 96–101. DOI: 10.3758/BF03202365
- 12Jamieson, R. K., & Mewhort, D. J. K. (2009). Applying an exemplar model to the serial reaction-time task: Anticipating from experience. The Quarterly Journal of Experimental Psychology, 62(9), 1757–1783. DOI: 10.1080/17470210802557637
- 13Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110(2), 316–339. DOI: 10.1037/0033-295X.110.2.316
- 14Kelly, M. A., Mewhort, D. J. K., & West, R. L. (2017). The memory tesseract: Mathematical equivalence between composite and separate storage memory models. Journal of Mathematical Psychology, 77, 142–155. DOI: 10.1016/j.jmp.2016.10.006
- 15Kemény, F., & Meier, B. (2016). Multimodal sequence learning. Acta Psychologica, 164, 27–33. DOI: 10.1016/j.actpsy.2015.10.009
- 16Malejka, S., Vadillo, M. A., Dienes, Z., & Shanks, D. R. (2021). Correlation analysis to investigate unconscious mental processes: A critical appraisal and mini-tutorial. Cognition, 212, 104667. DOI: 10.1016/j.cognition.2021.104667
- 17Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory & Cognition, 22(2), 350–364. DOI: 10.1037/0278-7393.22.2.350
- 18Meier, B., & Cock, J. (2010). Are correlated streams of information necessary for implicit sequence learning? Acta Psychologica, 133(1), 17–27. DOI: 10.1016/j.actpsy.2009.08.001
- 19Meier, B., Weiermann, B., & Cock, J. (2012). Only correlated sequences that are actively processed contribute to implicit sequence learning. Acta Psychologica, 141(1), 86–95. DOI: 10.1016/j.actpsy.2012.06.009
- 20Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53(4), 222–230. DOI: 10.1016/j.jmp.2009.02.003
- 21Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. DOI: 10.1016/0010-0285(87)90002-8
- 22Oberauer, K., Farrell, S., Jarrold, C., Pasiecznik, K., & Greaves, M. (2012). Interference between maintenance and processing in working memory: The effect of item-distractor similarity in complex span. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 665–685. DOI: 10.1037/a0026337
- 23Oberauer, K., & Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21–59. DOI: 10.1037/rev0000044
- 24R Core Team. (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
https://www.R-project.org/ - 25Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. DOI: 10.1037/0033-295X.85.2.59
- 26Rouder, J., Kumar, A., & Haaf, J. M. (n.d.). Why most studies of individual differences with inhibition tasks are bound to fail. DOI: 10.31234/osf.io/3cjr5
- 27Rowland, L. A., & Shanks, D. R. (2006). Attention modulates the learning of multiple contingencies. Psychonomic Bulletin & Review, 13(4), 643–648. DOI: 10.3758/BF03193975
- 28Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115(2), 163–196. DOI: 10.1037/0033-2909.115.2.163
- 29Shanks, D. R. (2010). Learning: From association to cognition. Annual Review of Psychology, 61(1), 273–301. DOI: 10.1146/annurev.psych.093008.100519
- 30Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17(3), 367–395. DOI: 10.1017/S0140525X00035032
- 31Shimamura, A. P., & Wickens, T. D. (2009). Superadditive memory strength for item and source recognition: The role of hierarchical relational binding in the medial temporal lobe. Psychological Review, 116(1), 1–19. DOI: 10.1037/a0014500
- 32Singmann, H., Brown, S., Gretton, M., & Heathcote, A. (2022). rtdists: Response time distributions. Retrieved from
https://CRAN.R-project.org/package=rtdists - 33Stephens, R. G., Matzke, D., & Hayes, B. K. (2019). Disappearing dissociations in experimental psychology: Using state-trace analysis to test for multiple processes. Journal of Mathematical Psychology, 90, 3–22. DOI: 10.1016/j.jmp.2018.11.003
- 34Timmermans, B., & Cleeremans, A. (2015).
How can we measure awareness? An overview of current methods . In M. Overgaard (Ed.), Behavioral Methods in Consciousness Research (pp. 21–46). Oxford University Press. DOI: 10.1093/acprof:oso/9780199688890.003.0003 - 35Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology. Experimental Psychology, 60(6), 385–402. DOI: 10.1027/1618-3169/a000218
- 36Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 21(5), 641–671. DOI: 10.1080/09541440802205067
